
SEMI-ANNUAL STATUS REPORT

Error Control Techniques for Satellite and

Space Communications

NASA Grant Number NAG5-557

Principal Investigator:

Daniel J. Costello, Jr.

August 1994

Summary of Progress

In this report, we will focus on the results included in the Ph.D. dissertation of Dr. Yannick

Levy, who was supported by the grant as a Research Assistant from August 1990 through May

1994. Dr. Levy completed his dissertation and received his Ph.D. degree in May 1994. A

copy of the dissertation is included as Appendix A to this report. Two papers have already

been published based on Dr. Levy's research [1,2]. In addition, one journal paper has been

accepted for publication [3], another has been submitted for publication [4], and one more is

in preparation for submission [5]. Finally, three conference presentations have resulted from

this work [6-8]. The following sections contain brief summaries of this research.

1) Construction of Optimum Geometrically Uniform Trellis Codes

Since the publication of Ungerboeck's [9] pioneering paper on trellis coded modulation,

many researchers have attempted to construct good codes and to analyze their performance.

One of the major difficulties encountered is that, except in certain circumstances, the combina-

tion of a linear convolutional encoder with a mapping into a preselected signal constellation,

such as 8-PSK or 16-QAM, results in a nonlinear trellis code. In other words, the set of

distances between a reference code sequence and all other code sequences depends on the

reference sequence chosen. This means that the distance properties of a given code cannot be

evaluated by choosing the all-zero code sequence as the reference, unlike the situation with

linear codes. Also, computer simulations of performance cannot assume that the all-zero code

sequence was transmitted, as is routinely done for linear codes.

In a recent publication, Forney [10] outlined conditions, called geometric uniformity, under

which a trellis code has exactly the same set of distances to other code sequences, indepen-

dent of the reference sequence chosen. In other words, a geometrically uniform trellis code,

although not necessarily linear, contains the essential property of a linear code needed to

allow simplified code construction and performance analysis. Unfortunately, most previously

constructed trellis codes are not geometrically uniform.

Several researchers have attempted to find good geometrically uniform trellis codes using a

variety of approaches, including imposing only a group structure, rather than the usual finite

field structure, on the code symbols and developing new methods of signal set partitioning.

The key contribution of Dr. Levy's Ph.D. dissertation was the discovery of a totally new

approach to constructing geometrically uniform trellis codes. In this approach, rather than

following the standard procedure of preselecting a signal constellation, the signal parameters

are treated as variables in the code construction algorithm, and a trellis structure, comprising

the number of trellis states, the number of branches leaving each state, and the number of

real valued code symbols on each branch, is preselected. This implies a fixed code rate and

trellis complexity. Then a simulated annealing algorithm is used to assign code symbols to

branches such that the free distance of the code is maximized, under the constraint that the

code be geometrically uniform. The code symbols selected by the construction algorithm

then define the signal constellation. In general, optimum free distance geometrically uniform

codes are obtained, and the signal constellations obtained are asymmetric. In many cases,
improvements in free distance are obtained over codespreviously believed to be optimum,
under the assumptionof a symmetric signal constellation.

Although this researchhad asits primary goal the construction of optimum geometrically
uniform trellis codes,the approachusedappliesequally well to the construction of optimum
binary convolutionalcodes.For, example,it is wellknown that the best rate 1/2, 4state binary
convolutional code hasminimum free Hamming distance 5. If this codeis used with QPSK
modulation, the minimum freesquaredEuclideandistanceis 10. Usingthe approachoutlined
above,a rate 1/2, 4 state codecanbe found using a rectangular, rather than square,4-point
signal constellation whichhasminimum freesquaredEuclideandistance10.67,yielding about
0.3dB coding gain comparedto the previously known "optimum" code. We believethis new
approachto codeconstruction hasthe potential to deliver fractional dB gains in performance
comparedto existing NASA codingsystemswith no increasein systemcomplexity.

2) A Statistical Approach to Constructing Convolutional Code Generators

Another contribution madein Dr. Levy's Ph.D. researchwasthe discoveryof a relationship
betweenthe correlation coefficientsof a set of convolutional codegeneratorsand the weights
of the code sequences.This relationship allows one to develop an algorithm, again using
simulated annealing, for constructing good, although in generalsuboptimum, convolutional
codeswith very large constraint lengths. For example,good rate 1/2 codesout to constraint
length v = 50 have been constructed using this method. These long codes have potential in

a sequential decoding system for achieving virtually error-free communication.

3) Calculating the Exact Performance of a Convolutional Code

Appendix B of this report contains a paper [3] recently accepted for publication by the

IEEE Transactions on Information Theory. In this paper, a new technique is developed for

calculating the exact bit error rate (BER) of a convolutional code. A Markov chain method is

used to model a Viterbi decoder, following an approach used successfully to calculate the exact

distortion of the Viterbi algorithm when used as a source encoder. Although this technique is

applicable only to very short codes, it may be useful for computing the exact BER of the inner

code in a concatenated coding system, since low complexity inner codes are often chosen for

concatenated systems. Using performance bounds or time consuming computer simulations

to estimate the BER of the inner code, on the other hand, can often lead to inaccurate results

in determining overall concatenated system performance.

References

[1] Y. Levy, D. J. Costello, Jr., and A. R. Calderbank, "A Markovian Method Com-

mon to Both Quantization and Decoding Using Convolutional Codes", pp. 161-166, in

Coding and Quantization, R. Calderbank, G. D. Forney, Jr., N. Moayeri (Eds.), Ameri-

can Mathematical Society, 1993.

3

[2]

[3]

[4]

Y. Levy and D. J. Costello, Jr., "An Algebraic Approach to Constructing Convolutional

Codes from Quasi-Cyclic Codes", pp. 189-198 in Coding and Quatization, R. Calderbank,

G. D. Forney, Jr., N. Moayeri (Eds.), American Mathematical Society, 1993.

M. R. Best, Y. Levy, P. C. Fishburn, A. Rabinovich, A. R. Calderbank and D. J. Costello,

Jr., "An Exact Calculation of the Performance of a Convolutional Code", IEEE Trans.

Inform. Theory, accepted for publication.

Y. Levy and D. J. Costello, Jr., "Optimum Constellation Design for Geometrically Uni-

form Trellis Codes", IEEE Trans. Inform. Theory, submitted for publication.

[5] Y. Levy, and D. J. Costello, Jr., "A Construction of Convolutional Code Generators using

Statistical Properties", IEEE Trans. Inform. Theory, to be submitted.

[6] Y. Levy and D. J. Costello, Jr., "A New Bound on the Free Distance of Rate 1/n Con-

volutional Codes", Proc. IEEE International Symposium on Information Theory, p. 139,

San Antonio, TX, January 1993.

[7]

[8]

[9]

[10]

Y. Levy and D. J. Costello, Jr., "A Systematic Construction for Geometrically Uniform

Trellis Codes", Proc. Conference on Information Sciences and Systems, Princeton, N J,

March 1994.

Y. Levy and D. J. Costello, Jr., "On the Construction of Real Number Trellis Codes",

Proc. IEEE International Symposium on Information Theory, p. 163, Trondheim, Nor-

way, June 1994.

G. Ungerboeck, "Channel Coding with Multilevel/Phase Signals", IEEE Trans. Inform.

Theory, Vol. IT-28, pp. 55-67, Jan. 1982.

G. D. Forney, "Geometrically Uniform Codes", IEEE Trans. Inform. Theory, Vol. IT-37,

pp. 1241-1260, Sept. 1991.

4

Appendix A

Real Number Trellis Codes

REAL NUMBER TRELLIS CODES

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Yannick L6vy

Ing6nieur Sup61ec, France, and M.S.E.E.

Daniel J. Costello, Jr., Director

Department of Electrical Engineering

Notre Dame, Indiana

April, 1994

REAL NUMBER TRELLIS CODES

Abstract

by

Yannick LEVY

Coding was first developed on the binary field. A redundant number of bits

was added to the information in order to provide protection against noise, when

transmitting or storing data. Recently, coding and modulation were combined in

order to transmit data without requiring a lower transmission rate or a larger channel

bandwidth. Although the construction was first done by combining binary codes and

signal constellations in an efficient way, this type of coding scheme may also be viewed

as coding on the field of real numbers.

The focus of this dissertation is the construction of trellis codes, since efficient

decoding techniques are independent from the field in which codes are constructed.

First, a new technique to construct binary convolutional codes based on the statistical

properties of convolutional code generators is presented. The technique yields codes

with much larger constraint lengths than previously constructed codes. In addition,

the technique provides insights to aid in the design of good trellis codes on both the

binary and real fields.

Asymptotic and non-asymptotic bounds on binary and real number codes are

presented in a unified way in order to show the improvement expected by using real

number trellis codes instead of binary trellis codes. This improvement is particu-

larly important for high rate codes,as well asfor trellis codeswith relatively short

constraint length.

The usual schemecombining binary codeswith expandedsignal constellations

is presented,and recentwork involving multi-dimensional constellations,non-binary

set-partitioning techniques,and the useof lattices to designsignal constellations is

described. This leads to somequestionsconcerning the optimality of this design

technique. A new techniquebasedon the direct optimization of low rate trellis codes

on the real field is then presentedand somenew codesshowimprovementsoverusual

binary codes.

The problemof adjusting a large numberof parameterswhenextendingthis con-

struction to morecomplexratesand larger constraint length is then solvedby adding

an extra constraint in the designof real numbertrellis codes.Geometricuniformity

is presentedas an extensionof the linearity conceptfor binary convolutional codes.

It providesa way of designingthe codewith the samenumberof parametersthan a

binary convolutional codeand to study its performance. New codesof various rates

and constraint length are constructed, and it is proven that non-symmetricsignal

constellation are more adapted to the topology of trellis structures than the usual

modulation schemes.

This conceptprovidesa geometricview to the problemof designingcodesin the

Euclideanspace,isomorphicto the real field. This new constructiontechniqueallows

us to clearly decomposethe problemof codedesignfor low and high rate codes,and

showwhy improvementis observedwhenconstructing trellis codesin the real field as

opposedto the binary field. The addition of shapingfor high rate codesandthe study

of a general algebraicapproach to describeour geometricconstruction is presented

and left for future research.

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

ACKNOWLEDGEMENTS xiii

INTRODUCTION 1

1.1 Digital communications 1

1.2 Signal modulation 4

1.3 Channel model 7

1.4 Coding Theory 10

1.4.1 Block codes 11

1.4.2 Decoding of block codes 14

1.4.3 Trellis codes 17

1.4.4 Decoding of trellis codes 20

1.5 Construction fields for codes 24

1.6 Overview of the dissertation 27

BINARY CONVOLUTIONAL CODES 30

2.1 Definition 30

2.2 On the weight of binary convolutional code sequences 33

2.2.1 On the weight of the sum of two binary numbers 34

iv

3

4

v

2.2.2 On the product of two binary polynomials 35

2.3 Weight of rate 1/n convolutional codewords 38

2.4 Algorithm I to constructing good convolutional codes 41

2.5 Algorithm II to constructing good convolutional codes 48

2.6 Conclusion 55

BOUNDS ON THE DISTANCE OF BLOCK AND TRELLIS CODES 57

3.1 Sphere packing and asymptotic bounds on the minimum distance of

block codes 58

3.1.1 Bounds on the density of lattices 61

3.1.2 Relation between code distance and packing density 63

3.1.3 Asymptotic bounds on the minimum distance of block codes 64

3.2 Non asymptotic bounds for block codes 69

3.3 Trellis codes 72

3.3.1 Non asymptotic upper bounds for trellis codes 73

3.3.2 Asymptotic upper bounds for trellis codes 75

3.3.3 Asymptotic lower bounds on the free distance of trellis codes . 79

3.4 Conclusion 84

LATTICES AND TRELLIS CODES CONSTRUCTIONS

4.1

4.2

Channel coding with expanded signal constellations

Set partitioning techniques and code constructions

4.2.1 Set partitioning

4.2.2 Convolutional code construction 94

Lattices and non-binary set partitioning 98

Trellis codes on multi-dimensional constellations 101

86

86

92

92

vi

4.5 Non binary convolutional codes 103

4.6 Generalclassof real number trellis codes 105

4.6.1 Definition 106

4.6.2 Construction of real number trellis codes 111

4.6.3 Results............................... 121

4.7 Conclusion 124

5.3

5.6

5.7

A GEOMETRIC CONSTRUCTION OF GEOMETRICALLY UNI-

FORM TRELLIS CODES 126

5.1 Geometricallyuniform trellis codes 126

5.2 Trellis topology and generatingbranches 128

5.2.1 Parallel branches 130

5.2.2 Diverging branchesfrom the samestate 132

5.2.3 Generating branches of the trellis 138

Optimization of the free distance 140

5.3.1 Constellation optimization 141

5.3.2 Generator optimization 144

Search for the best geometrically uniform code 147

Analysis of some existing geometrically uniform codes 150

5.5.1 Geometric uniformity of Wei's 8 state, rate 4/2 trellis code 150

5.5.2 Non geometric uniformity of Wei's 64 state 5/4 code 152

Construction of the best geometrically uniform codes for a trellis topology153

5.6.1 Implementation of the algorithm 154

5.6.2 Results 164

Conclusion 168

vii

6 CONCLUSION 176

6.1 Unification of the theory for constructing binary and real numbercodes178

6.1.1 Low rate codes 178

6.1.2 High rate codes 180

6.2 Shapingon high rate codes........................ 184

6.3 Algebraic techniquesfor geometricconstructions 189

6.4 Summary 192

BIBLIOGRAPHY 194

LIST OF TABLES

1.1 Addition and multiplication in the binary field 24

2.1 Table of rate 1/2 convolutional codes constructed for constraint length

3 _< m _< 20 52

2.2 Table of rate 1/2 convolutional codes constructed for constraint length

21<m<27andrn=50 53

3.1 Upper bound on the density of sphere packings for n _< l0 62

3.2 Upper bound on d_E/nP for (n,k) block codes 71

4.1 Table of minimum distance for Z '_ lattice constellations 110

4.2 Real number trellis codes constructed by a direct simulated annealing 123

5.1 Two-dimensional real number trellis codes 170

5.2 Three-dimensional real number trellis codes 171

5.3 Four-dimensional real number trellis codes 172

5.4 Two-dimensional constellation parameters 173

5.5 Three-dimensional constellation parameters 174

5.6 Four-dimensional constellation parameters 175

.°°

Vnl

LIST OF FIGURES

1.1 Digitalization of an analog signal: (a) Analog signal, (b) Sampled values. 2

1.2 General communication system 4

1.3 Different constellations in 1 and 2 dimensions 6

1.4 Relationship between Hamming distance and Euclidean distance for

BPSK and QPSK constellations 12

1.5 n = 2, M = 3 block codewords and their associated spheres 14

1.6 Transition probabilities for the Binary Symmetric Channel 17

1.7 State diagram and trellis for a_ rate 1/2 constraint length 2 trellis code

over F2 18

1.8 Viterbi decoding algorithm applied on a rate 1/2 constraint length 2

binary trellis code 21

1.9 M = 3, n = 2 block codes in the binary and real fields 26

2.1 Binary rate k/n convolutional encoder 31

2.2 Algorithm I at different steps 45

2.3 Simulation of Algorithm I for rate 1/2 codes 47

2.4 Simulation of Algorithm II for rate 1/2 codes 54

3.1 Best packings in 1, 2 and 3 dimensions 60

3.2 Distance between codewords packed in a maximum energy sphere... 63

ix

X

3.3 Asymptotic lower and upper bounds on the minimum squared Eu-

clidean distance of binary and real block codes: (a): Real codes upper

bound, (b): Real codes lower bound, (c): Binary codes upper bound,

(d): Binary codes lower bound 68

3.4 Upper bounds on the minimum squared Euclidean distance of binary

and real block codes of finite dimension n = 10 sent with maximum

energy nP 72

3.5 Asymptotic upper bounds on the minimum free squared Euclidean

distance of (a) real trellis codes and (b) binary trellis trellis codes... 78

3.6 Different trellis paths separated by the same distance 84

4.1 Trellis structure of a trellis code on an expanded signal constellation. 88

4.2 Expanded signal constellation trellis encoder block diagram 89

4.3 4 state, rate 2/3 8PSK trellis encoder 91

4.4 4 state, 1 uncoded bit, rate 2/3, trellis diagram 91

4.5 QPSK and expanded 8PSK constellations 91

4.6 Set partitioning of 8PSK constellation 93

4.7 Feedback encoder for a 4 state, rate 1/2 binary convolutional code used

with a trellis code 95

2Z 2 cosets resulting from the Z2/2Z 2 partition of the Z 2 lattice.. 99

Binary and four-way partitioning of a 3D cube 100

4.10 Trellis for a rate 1/2 constraint length 2 real trellis code with no parallel

branches 106

4.11 Real trellis encoder 107

4.12 128 points taken from the 2-dimensional Z 2 squared lattice 109

xi

4.13 Simulatedannealingalgorithm to optimize a real number trellis code. 115

4.14 Binary and real constellations 118

4.15 Simulation of the performanceof the best4 state, rate 1/2 trellis codes.

(a) binary, (b) real number 120

4.16 Rate 1/2 binary and real trellis codedistancesand upper bounds. . . 124

5.1 T(3,2,2) topology 129

5.2 (a) Perfectly geometrically uniform set of points in 2 dimensions,(b)

Geometricallyuniform up to boundary effectssetof points in 2 dimen-

sions..................................... 131

5.3 (a) PGU set of diverging PGU parallel branches,(b) BEGU set of di-

vergingPGU parallel branches,(c) BEGU set of diverging BEGU par-

allel branches,(d) Non GU translated setsof PGU parallel branches. 134

5.4 Two diverging brancheswith four parallel branchesat a trellis state.. 134

5.5 (a) 4 diverging sets of 4 parallel branches,(b) 4 diverging sets of 2

parallel branches,(c) 4 diverging setsof 8 parallel branches...... 136

5.6 Constructinggeometricallysimilar PGU DPB sets: (a) k < n case, (b)

= n case, (c) k = n case ".................. 137

5.7 Generating branches of a geometrically uniform trellis code constructed

on a T(3, 2, 2) 139

5.8 Generating branches of a geometrically uniform trellis code constructed

on a T(2, 0, 3) 140

5.9 (a) Squared constellation of the 4 state rate 1/2 convolutional code,

(b) Rectangular constellation for the same code 142

xii

5.10 (a) Optimized squaredPGU DPB set, (b) Optimized rectangularPGU

DPB set................................... 143

5.11 (a) 8AMPM constellation, (b) Merged8AMPM constellation,(c) 8PSK

constellation................................ 144

5.12 Trellis and constellation of the best 4 state rate 3/2 trellis code.... 147

5.13 Searchalgorithm flow chart........................ 148

5.14 (a) 4 state rate 3/2 code(p = 2), (b) 8 state rate 3/2 code(p = 1). 150

5.15 Wei's eight state rate 4/2 trellis codeon T(4, 2, 3) 151

5.16 Cartesian product of two 1D constellations 154

5.17 3-dimensional hyperrectangle 155

5.18 (a) Translated DPB sets with their associated rectangular PB sets (GU

case), (b) Translated DPB sets with their associated square PB sets

(non GU case), (c) Translated DPB sets with their associated square

PB sets (GU case) 159

5.19 3 dimensional cube rotated around one axis 161

6.1 2-dimensional hypercube and polytope with 3 codewords 180

6.2 Construction of 8 codewords on (a) a 2-dimensional sphere and (b)

optimal positions 181

6.3 Construction of high rate codes by assembling low rate codes 182

6.4 Shaping on the Cartesian product of 1-dimensional constellations... 186

6.5 Trellis shaping block diagram 187

6.6 Binary labeling of a 3-dimensional cube 190

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisor, Professor Daniel J. Costello, Jr.,

for his invaluable advice and help during our four years of collaboration. Working

with Professor Costello at the University of Notre Dame has been a very enjoyable

and interesting experience, and I hope other students will contribute to the "French

connection" with his he!p in the future.

I would like to thank Diane Mills and Lance Perez for our fruitful discussions and

their help concerning the English wording of this dissertation. Thanks also to Mark A.

Herro, Ken D. Sauer, and Robert L. Stevenson for serving on my dissertation defense

committee and helping me with some of the concepts introduced at the beginning of

this dissertation.

Special thanks to my family in France, my friends around the World, and all the

friends I made on the beautiful campus of the University of Notre Dame during my

four years of studies. In particular, I would like to thank Barbara Schmitz for sharing

an office with me in a perfect atmosphere.

I wish to acknowledge the financial support provided by the Soci_t_ Anonyme de

T(_l_communications (S.A.T.) during the first part of my research, as well as their ad-

ministrative support for doing my French national service as a researcher in an Amer-

ican University. I also wish to acknowledge the financial support provided by research

assistantships from the National Science Foundation (NSF Grant NCR89-03429) and

Xln

xiv

the National Aeronautics and Space Administration (NASA Grants NAG5-557 and

NAG3-1549).

Finally, I would like to thank the University of Notre Dame for accepting me into

the Graduate Program, and providing a wonderful work environment. Also, thanks

to the French Government for their interest in this research and the organization of

different meetings with other students and professors in the United States.

CHAPTER 1

INTRODUCTION

1.1 Digital communications

The most important concept of the theory of communications is the conversion of

analog signals into digital form. This transformation of a continuous signal in time

or space into a discrete signal is done by sampling the analog signal in time or space,

which is similar to what the human eye or ear does when receiving and transmitting

a signal to the brain. While it is obvious that our eyes and ears do not have infinite

precision, we do not seem to perceive a sampled version of what we see or hear,

but rather have a continuous idea of images and sounds. This concept is used in

communications when transmitting analog signals in digital form. Nyquist [1] proved

that if a signal has a limited bandwidth, it is indeed possible to transmit that signal in

a digital form without deterioration, which means that the entire analog signal can be

recomposed from its samples. In a communication system, samples are quantized into

a set of real values. An index pointing to the value is sent as a digital number. This

process converts an analog signal into series of digital numbers as shown in Figure

1.1.

2

li:l

i

o-

i i _ I I

I I I I I I I I I i'_
!llllllll ! !

L L , i ' t 1 _ i I

r

+

(a) (b)

Figure 1.1: Digitalization of an analog signal: (a) Analog signal, (b) Sampled values.

There are several reasons for converting analog signals into equivalent digital sig-

nals. First, it is possible to multiplex different digital signals in the same transmission,

that is, divide the entire transmission time into separate time slots used by different

information sources. This is what communication companies are trying to do when

sending data, voices, text and images through the same copper wires, satellite, op-

tical or microwave links. Second, source coding techniques compress digita! signals

by removing redundancies, minimizing the transmission rate. Third, cryptography

protects digital signals from undesirable listeners by changing the signification of each

digits.

Finally, when compared to analog transmission, digital transmission as opposed

to analog transmission efficiently protects the transmitted information from channel

noise. If an analog signal is transmitted on a long distance, as on a satellite channel,

or reamplified along the distance, as on telephone channels, the Signal to Noise ratio

becomes too low for the receiver to understand the transmitted information. On

the other hand, the digital form of the same signal can be transformed into a set of

3

patterns that the receiver can recognize. If the received signal is different from any of

these patterns, the receiver can detect errors and may be able to correct them. This

last concept is studied in coding theory, where one tries to design these patterns also

called codewords, as well as efficient methods for encoding and decoding transmitted

and received messages.

Coding theory not only provides techniques to correct messages corrupted by noise

in transmission or storage, but also tries to minimize the energy needed to transmit

as well as the bandwidth of the transmitted signals. The increasing volume of com-

munications requires indeed to minimize the cost of transmissions mainly determined

by the energy and bandwidth needed to transmit a signal. Error correction at a given

energy was an early goal of coding theory, whereas increasing transmission speed over

a channel with limited bandwidth started later with the combination of coding and

modulation.

Engineers have always decomposed complex problems into distinct separable prob-

lems in order to solve the entire problem with simple solutions. Communications

systems are typically modeled as shown in Figure 1.2. In 1949, Shannon [2] proved

that some of the blocks in Figure 1.2 are separable asymptotically, that is, as the

performance of each block becomes perfect, each block performance has been limited

by its implementation. However, in the recent years, a new method of designing

the blocks jointly has improved overall performance. The trend began in 1982 when

Ungerboeck [3] combined channel coding and modulation, and continues now with

the combination of source coding and channel coding for applications such as high

definition television.

4

U

Digital Source _i

Destination

Encoder Modulator

\

Noise

I

Channel

,/"

/
/

Decoder i Demodulator
r

Figure 1.2: General communication system

In this dissertation, channel coding will often be seen as the entire block of com-

bined coding and modulation and the optimization of this entire block will be sought.

In order to describe coding theory better, the next sections will discuss signal mod-

ulation, present models used for the channel and channel noise, and summarize the

state of the art in coding theory. This model will exhibit some important parameters

that the coding theorist wants to optimize in the design of a communication system,

and which will appear in the remainder of this dissertation.

1.2 Signal modulation

Although digital signals are often represented as series of digits, most wireless chan-

nels require the signal to be modulated before transmission. The modulation is a

transformation of a digit into a function of time called waveform, and there is a one-

to-one mapping between each possible digits and each waveform. These waveforms

5

are usually time-translated shaped pulses, and can be expressed as a sum of orthonor-

mal functions Cj(t) for t between 0 and T, T being the signaling interval, where two

functions are orthonormal if and only if

oTcj(t)¢_(t)dt = @, (1.1)

where 5j_ = 1 if j = l and 5jz = 0 if j -fi l. Orthonormal functions form the basis of

an N-dimensional space. A signal expressed in this basis is an N-dimensional vector

called a signal point and the set of signal points is called a constellation. Thus, each

waveform can be represented as a signal point in an N-dimensional space.

Simple constellations are one and two dimensional constellations for which the

orthonormal functions are cosines and sines with a given frequency. Constellations

with larger dimensions have to be constructed using different frequencies or time

intervals. For a given frequency F and a time interval T, two orthonormal functions

can be derived:

and

f7 2 . t

¢2(t) = k/(_) sm27rF_, (1.3)

and any signal point si can be expressed as a two dimensional vector (sil, si2), and

the transmitted waveform si(t) is then expressed as

= + (1.4)

More generally, for an N-dimensional constellation, any transmitted waveform can

be expressed as an N-dimensional vector (sq, si2,..., siN), and the transmitted wave-

form si(t) is then expressed as

N

s,(t) = E %¢j(t). (1.5)
j=l

One dimensional constellations are usually called PAM (Pulse Amplitude Modu-

lation), and two dimensional constellations can be either QAM (Quadrature Ampli-

tude Modulation), or PSK (Phase Shift Keying) for constant amplitude signal points.

Some of these constellations are represented in Figure 1.3. The total number of sig-

nal points Af corresponds to the total number of different sets of digits that can be

sent during the time interval T. If digits are binary, that is taken from the field

F2 = {0, 1}, they are called bits, and log2(A/") bits can be transmitted at the same

time. An (N = 1,N" = 2) constellation can be either called 2-AM or BPSK (Binary

Phase Shift Keying), and only one bit can be transmitted at a time.

=' n=l : ': n=2 ',

-o e- - • _---e
,, k,

2-AM

A A A A
W W W

4-AM

i, i /

QPSK

t

.01q _-__e

/

8-PSK

-o-o-o-o-o-o-o-o

8-AM

w w

General PAM 16QAM General QAM

Figure 1.3: Different constellations in 1 and 2 dimensions.

Since the basis of each constellation is orthonormal, the energy required to send

7

a waveform correspondingto one of the orthonormal functions equals 1, where the

energy Ef needed to send a function f(t) is defined by

FEs = fz(t)dt.
oo

Therefore, using the constellation, the energy E l can also be computed as

(1.6)

Ej = Ifl 2. (1.7)

In order to compare different constellations, we need to normalize the energy needed

per constellation use. This implies that the average energy to send all possible signal

points of the constellation with equal probability is 1, that is

1 _¢

y E Is,I = 1. (1.s)
i=1

In the next section, channels will be defined, and we will study how the constel-

lation should be designed in order to achieve a high reliability when transmitting

information.

1.3 Channel model

Channel is the general name given to any kind of transmitting or storing media.

A channel can be copper wires, fiber optics, magnetic bands, disks, atmosphere or

space. Different types of noise exist depending on the transmission media or the

location. In order to design a reliable communication system, in which the receiver

has the greatest probability of correctly interpreting a signal, one must determine a

model for the channel corruptions. Two important channels with different character-

istics exist in nature, and can be modeled as the AWGN (Additive White Gaussian

Noise) channel and the Fading channel. The Fading channel model is important in

radiocommunicationssinceit is usually a good model for moving transmitters and

receiversin areaslike cities, wherewavesreboundon buildings creating interferences.

However,it is difficult to work with sinceits characteristicscanvary a lot depending

on the usersand their situation. The AWGN channelmodel is simpler to handleand

correspondsto satellite channels,telephonechannels,high-frequencyradio channels,

magnetic tapesand disks. In the remainderof this dissertation,wewill consideronly

the AWGN channelmodel, sinceit representsnumerousreal channels,and canbewell

protected againstnoiseby usingcoding theory to increasetransmissionreliability.

If a signal s(t) is transmitted over the AWGN channel, it is corrupted by an

additive white Gaussian noise n(t), and the received signal r(t) can be expressed as

= 4t)+ r,(t), (1.9)

where the white Gaussian noise has a Gaussian probability distribution, that is at a

given time to,

Pr(n <_ n(to) <_ n + e) - 1 n _
vf_a exp(- _), (1.10)

where a 2 corresponds to the variance of the noise equal to the one-sided power spectral

density N0 of the noise, and e is a any given positive real number. Equations (1.9)

and (1.10) can be written in the N-dimensional basis formed by the orthonormal

functions defined previously. Thus,

r=s+n, (I.ii)

where r and s are the received and transmitted signals expressed in the N-dimensional

basis, and n = (nl, n2,..., nN) is an N-dimensional noise vector statistically inde-

pendent from s. More generally, in the remainder of this dissertation f will denote

the signal point that expresses a given function of time f(t). The Signal to Noise

Ratio (SNR) is then defined as the average energy of a signal Is[2 divided by No.

Upon reception of r, the receiver must decide which signal s was sent. The rule

used by the receiver is a maximum a posteriori rule (MAP), which consists in deciding

that si was sent if and only if Pr(s/r) is maximum for s = si. Using Bayes's rule

[4], this is equivalent to maximizing Pr(r/s = si) assuming each signal to be sent

equiprobably by the transmitter. This rule is called maximum likelihood estimation

(ML). An ML receiver is optimum if all the messages are equally likely. Yet,

Pr(r/s=si)=p,_(r-si), (1.12)

where p,_(a) is the i.i.d N-dimensional Gaussian distribution of the noise with vari-

ance a 2, that is

1 _2_1_ (1 13)
•

Thus, the ML receiver maximizes e 2_- , which is equivalent to minimizing It- sil 2.

So the ML receiver decides that the closest signal point to the received signal point

was sent. This corresponds to finding the signal point at the lowest Euclidean distance

from the received point, where the Euclidean distance between two N-dimensional

vectors x = (xl,...,xu) and y = (yl,...,yu) is defined by

dE(x,y) = (xi - y,)2.

The squared Euclidean distance d_ is often used instead.

(1.14)

10

As it was noted, the Euclidean distance plays an important role in optimal recep-

tion of signals transmitted over the AWGN channel. Since an ML receiver decides

that the transmitted signal point is the closest to the received point in Euclidean

distance, it appears interesting to maximize the distance between the signal points of

a constellation such that there is as little confusion as possible for the receiver about

which signal was transmitted, thus increasing the transmission reliability of the com-

munications system. In the next section, coding theory will be introduced, and it

will be shown that the Euclidean distance between signal points can be increased by

grouping signal points together in order to increase the dimensionality of the space.

1.4 Coding Theory

Coding theory considers the design of blocks or sequences of digits, which once modu-

lated on a signal constellation present a large Euclidean distance between each other.

An ML decoder does not decode each received signal independently like it was as-

sumed in the previous section but rather waits for the entire block or sequence of

received signals. It was indeed shown by Shannon [2] and then studied in more de-

tails by Slepian [5] that a larger distance can be obtained by using longer blocks or

sequences of digits. However, to avoid having to decrease the transmission rate, that

is the amount of information per time unit, it is necessary to be able to send the same

information during longer time intervals, which corresponds to increasing the total

number of possible blocks or sequences. Presently, coding theory considers the design

of block codes, for which digits are assembled in independent blocks, and trellis codes,

11

for which a unique sequenceof dependentdigits and arbitrary length is sent.

While blockcodesaresimply the extensionof the previoussectionto n-dimensional

codewords with n _> N (n is generally a multiple of N), trellis codes were constructed

later in order to increase the length of codewords without having to increase the

design and decoding complexity. We will first describe block codes.

1.4.1 Block codes

A block code is a set of M n-dimensional codewords on a field F, where F can either be

F2 = {0, 1}, Fq the Galois Field of order q with q prime, or IR the set of real numbers.

Thus, a code represents a subset of F '_. The number of codewords M is usually a

power of 2; so M = 2 k, where k is the number of bits of the information blocks

associated to the codewords of length n. Therefore, there is a one-to-one mapping

between the M possible information blocks of length k and the M codewords of length

n. The rate of the code is then defined as

k 1
R- - log2(M). (1.15)

n n

For a binary block code, that is for F2 = {0, 1}, it is possible to send each bit

by using a BPSK constellation. If the distance that separates the two signal points

in the BPSK constellation is 2, then the squared Euclidean distance d_ between two

d2E = 4dH, (1.16)

codewords equals

where dH is the Hamming distance between the two codewords in F2, which is equal

to the number of bits where the codewords differ, as shown in Figure 1.4. Formally,

12

the Hammingdistancebetweentwo codewordsu =

is given by

dI-I(U, v) = __, 1.
ui_vi

(u:,...,u,,) and v = (vl,...,v,_)

(1.17)

BPSK

=

1, !,

r Y'x

i

4d.

.o
/,

/i

/i

QPSK

11 O'

/

/

"_---_--. 01" 2dH

I=
2d.

/4
/

°oo

=:

Figure 1.4: Relationship between Hamming distance and Euclidean distance for

BPSK and QPSK constellations.

Similar to the use of the BPSK constellation, sending a codeword using a QPSK

constellation requires to pair bits of the codeword, which allows us to send twice

as many bits per constellation use. For the same cnergy per constellation use, the

squared Euclidean distance is d2E = 2dH. Not only is the distance half the distance

of a BPSK constellation, but the required energy is half the energy of a BPSK con-

stellation because the QPSK constellation is used only half as many times as the

BPSK constellation to send the same number of bits. Thus, increasing the number

of points Af in the constellation allows one to transmit the same codeword faster.

However, increasing N" without increasing the dimensionality of the constellation N

cannot be done without losing the proportionality between the Hamming distance

13

and the Euclideandistanceas in (1.16). In chapter 4, wewill seetechniquesto map

binary codewordson a constellation such that the Euclidean distanceof the entire

communicationsystemincreaseswith the Hamming distanceof the binary code.

An important parameterassociatedwith a block code is the minimum distance

between any two codewords of this block code.

distance of a code C is defined by

Formally, the minimum Hamming

dm_,_(C) = min{dH(u,v) : u,v C C,u # v}. (1.18)

If a code is linear, that is, if the set of all codewords forms a vector space, then the

minimum Hamming distance of a code is also equal to the minimum weight of any

nonzero codewords, that is,

dmi,_(C) = min{w(v) : v E C,v 7_ 0}, (1.19)

where the weight w(v) is the sum of all the nonzero components of v. It was noted

that when the receiver decides which signal was transmitted, or when using coding,

which codeword was transmitted, it decides of the closest codeword to the received

vector. A sphere of radius r in n dimensions is defined as the set of n-dimensional

points at a distance less than or equal to r from one n-dimensional point called

center of the sphere. Thus, suppose that each codeword in a code C represents the

center of a sphere of radius r, then for r < [½(d- 1)], all spheres are disjoint as shown

in Figure 1.5. In that case, any received n-dimensional vector at a distance less than

or equal to r from a codeword can be uniquely decoded. For the binary case, this

means that at most r errors can be corrected. Thus, the greater the distance is, the

larger the number of corrected errors can be.

14

/

// V1

/ 'l

i

II

. i

\

IL

•\

[' /

/

\

\
\

V2
• 1

/
t

/
/

Figure 1.5: n = 2, M = 3 block codewords and their associated spheres.

1.4.2 Decoding of block codes

Although it was shown before that a ML receiver should decide that the transmitted

codeword is the closest in Euclidean distance to the received word, this decoding

procedure, called soft decision decoding, becomes tedious as the number of codewords

M or the number of dimensions n gets large. Indeed, such a decoding procedure, called

table lookup, would result in comparing the distances between the received word and

all possible codewords.

Another technique called hard decision decoding consists of mapping each coor-

dinate of the received word to a signal point of the signal constellation, yielding a

received word in the same field F than the code field. In that case, an algebraic

technique can be used to decode the received word, which is much simpler than a

table lookup decoding procedure for numerous codes such as BCH, Reed-Solomon, or

Reed-Muller codes [6, 7, 8].

15

An important parameter that characterizesa block code is the probability of er-

ror, Pe, resulting from the use of the code [9, 10, 11]. The probability of error that is

usually of interest in is the information bit error probability, defined as the expected

number of information bit errors divided by the total number of information bits. The

determination of the probability of error is often difficult, and either simulations or

upper bounds calculations are performed. Also, the probability of a codeword error

PM, defined as the probability that a decoded codeword is different from the trans-

mitted one (yielding in general many information bit errors), is simpler to evaluate

or bound in some cases. For example, if a binary block code is used on a Binary

Symmetric Channel (BSC) (hard decision decoding), that is an AWGN channel for

which the probability of receiving a 0 (1) when transmitting a 1 (0) is p as shown in

Figure 1.6, the probability of m errors in a block of n bits is

P(m,n) = pro(1 _ p),_-m. (1.20)

m

Therefore, since r errors can be corrected,

PM _ _ P(m,n). (1.21)

rn=r+l

Another bound called union bound based on the fact that PM cannot be greater than

M - 1 times the probability of erroneously decoding the transmitted codeword as

its nearest neighbor (closest codeword in Hamming distance), which is at a distance

drain(C) from the transmitted codeword. Thus,

drnln

PM <_ (M- 1)
rn=[dm,,_/2]+ l

(1.22)

16

A tighter upper bound calledChernoff bound yields

PM < (M- 1)[4p(1- p)la,,,,/2. (1.23)

Although exact calculations of the probability of error involve the knowledge of

the number of codewords situated at a distance d from the transmitted codeword

for all possible d >_ drain, also called distance spectrum, the previous upper bounds

show the relationship between the probability of error and the minimum distance of

a code. The larger the minimum distance is, the smaller the probability of error is

for small p. This concept is general when using a coding scheme, that is, a code

with large minimum distance yields asymptotically a smaller error probability, i.e.

for large Signal to Noise ratio, or equivalently for small p on a BSC. However, the

entire distance spectrum is needed to evaluate the non-asymptotic error probability,

and often the minimum distance is not the only indicator of a good code at low

Signal to Noise ratio. In particular, if the number of nearest neighbor codewords, r,

is large, the performance of the code becomes worse, since the decoder can confuse

the transmitted codewords with many other neighbors. The coding gain represents

the amount of energy gained by using a code versus using the equivalent uncoded

system for the same probability of error, and the asymptotic coding gain represents

the coding gain at large Signal to Noise ratio.

Decoding techniques are limited by their complexity as M and n increase. As

it was said previously, the performance of the codes increases as n increases, and in

order to keep the same transmission rate, k increases proportionally, thus making

M = 2 k increase exponentially. In order to solve this complexity problem, a subclass

17

1-p
0 0

./

P

P

1 / -1

1-p

Figure 1.6: Transition probabilities for the Binary Symmetric Channel.

of infinite dimensional block codes, called trellis codes was discovered [12], for which

block codewords become infinite code sequences. Due to the trellis structure which

will be described in the next subsection, these code sequences can easily be decoded.

1.4.3 Trellis codes

A trellis code is a set of infinite dimensional vectors, called code sequences, related

by a trellis structure, where a trellis structure is a finite state diagram expanded

in time, as shown in Figure 1.7. The number of states a in the trellis is usually

a power of two, so a = 2 m, where m is called the constraint length of the code.

The information sequence consists of k-bits blocks which determine a path through

the trellis. The code sequences consist of blocks of n branch labels, called encoded

symbols, represented on each branch of the path on the trellis, chosen from a field

F. Example 1.4.1 shows the example of an encoding procedure for an information

sequence and the trellis code shown in Figure 1.7. The rate of the code is defined as

k
R = -. (1.24)

n

18

Example 1.4.1 In the trellis of Figure 1.7, consider the information sequence 1100.

Starting from state O, the first information bit 1 yields a transition from state 0 to

1, and produces the two information bits on this transition, i.e., 11. Similarly, the

following information bit produces 10, and the encoder jumps to state 3. Then, the

information bit 0 produces 10 again, going back to state 2. Finally, the last informa-

tion bit produces code bits 11, leading the encoder back to state O. The complete code

sequence associated to the information sequence 1100 is therefore 11101011.

Binary linear trellis codes are called convolutional codes because they can be gen-

erated using a generator matrix, that is, the code sequences can be generated by

performing a convolution between the information sequences and the generator ma-

trix. Binary convolutional codes will be described into more details in Chapter 2.

State Diagram Trellis
7_

• "t01

4, 3 ,_ _ --_/_ /_ /

,o ,o/

o1 oo....i,, ///ol /3 oo

r-,_' 0 i:_ _ -,J J J L/ \
, --- O0 O0 O0 O0

O0 time "

Figure 1.7:

over F2.

State diagram and trellis for a rate 1/2 constraint length 2 trellis code

19

The free distance of a trellis code is defined as the minimum distance between any

possible code sequences of the code. For a trellis code C,

ds_,,(C) __amin{d(u,v) : u,v E C,u # v}, (1.25)

where d(u, v) can be the Hamming distance between two binary codes sequences u

and v, or the Euclidean distance between u and v. Since a trellis has a finite number

of states, it presents remerging paths, which can simplify the computation of the free

distance, specifically,

d.tr,_(C) = min d(v,.,v',.), (1.26)

where v, is a code sequence of length r, and e_T (C) is the set of all code sequences of

length r different from v,.

If a code is binary and linear, that is if the set of all code sequences forms a vector

space, then the free distance of a code is also equal to the minimum weight of any

nonzero code sequence, that is

dsr,,(C) = min{w(v) : v E C,v 7_ 0}. (1.27)

Thus, the free distance is also equal to the minimum weight of all code sequences of

length r, for r greater than the shortest remerging path length, that is

ds_e_(C)= min w(v,). (1.28)

v_EC

Trellis codes were developed because their structure allows one to perform ML

decoding without having to use a table lookup decoding procedure, or an algebraic

technique which would prevent from using large sets of long codewords. This decoding

2O

techniquewasfirst presentedby Viterbi [13]. The next sectionexplainsthe main idea

of this techniquewhich wasshownto provideML decoding.

1.4.4 Decoding of trellis codes

The Viterbi algorithm is an efficient algorithm for finding the path of length f_. = n(L+

[_]) through the trellis which optimizes a metric between a received sequence and

the sequence given by this path, where the metric can be either the Hamming distance

for binary sequences, the Euclidean distance, or any expression of the distance that

we are interested in. kL represents the length of the related information sequence to

this path. The algorithm is as follows (see [9]):

• Step 1. At time unit j = m, compute the metrics for the single path entering

each state. Store the metric for each state.

• Step 2. Increase j by 1, and compute the metric for all the paths entering a state

by adding the branch metric to the previous connected state metric. Select the

best path (path with the best metric), and store this path with its associated

metric. Eliminate the other paths.

• Step 3. If j < L + m, repeat Step 2. Otherwise, stop and the path with the

best metric gives the ML decoded sequence.

Example 1.4.2 The trellis shown in Figure 1.8 represents the decoded path using

Viterbi algorithm when the sequence 1010110111 is received, corresponding to a se-

quence of length f.. = n(L + [_]) = 2(3 + 2) = 10 on a rate 1//2 binary convolutional

21

code with constraint length rn = 2. The metrics (Hamming distance) at each state

are indicated on top of the state, and the paths with worse metrics than the best are

crossed at each state for all time units greater than 2. The decoded path corresponding

to the code sequence 0000110111 is shown in bold.

1 01

O0 O0 O0

Receivedsequence 10 10 11

2

O0 O0

01 11

Figure 1.8: Viterbi decoding algorithm applied on a rate 1/2 constraint length 2

binary trellis code.

Since the metric can be the Euclidean distance, the Viterbi algorithm allows one

to apply soft decision decoding on the received sequences. This advantage over block

codes is important, since up to 3 dB can be gained on the asymptotic coding gain.

Moreover, the decoding complexity only depends on the number of states in the

trellis, not on the length of the sequences sent. One of the problems of the Viterbi

algorithm as described previously is that one has to wait for the entire sequence to be

received before the sequence can be decoded. In fact, it was shown that the decoding

procedure can start once a sequence of about 5 constraint lengths has been received.

Thus, as more bits of the sequence are received, the decoder can continuously decode,

22

thus reducing the total amount of memory needed for the decoder.

Again, we are interested in evaluating the probability of error when using a trellis

code. The probability of first event error PI(E) for a binary convolutional code used

on a BSC, that is, the probability that the decoded path diverges from the correct

path for the first time can be upper bounded by

oo

PI(E) < _ AdPd, (1.29)

d=dlree

where Ad is the number of code sequences of weight d, and Pa is the probability of

a first event error made on a weight d path. Pd can be computed [9] by noting that

a first event error will be made if more than d/2 errors occur on an incorrect path,

that is

{')p°(1-p)
e

Pd=

½ pd/2(1 _ p)el2 + _=(e/21+1

\ cl/2]

d odd

p*(1 - p)d-e, deven.

(1.3o)

Thus, by summing over all path of weight d for d = dlr_, to infinity, the probability

of first event error is upper bounded by

oo

Pt(E) < _ Ad[2_/p(1 -- p)la.
d=dlree

(1.31)

For large Signal to Noise ratio, that is for small p, the bound is dominated by the

free distance term, that is

PI(E) _ Ad,r,,2d'r"p d''°'/2. (1.32)

This bound can be transformedinto a bound on the bit error probability Pb(E),

1

Pb(E) _ -£Baj_2as_°°p aI_/2,

23

(1.33)

where Bd is the total number of nonzero information bits on all weight d paths.

Similar to the block codes case, the probability of error for large Signal to Noise ratio

can be minimized by maximizing the free distance of the code, as well as minimizing

the number of path with weight d = df_¢_, that is the number of nearest neighbors to

the all zero sequence.

Note that some encoders, called catastrophic encoders, have an infinite number of

paths with small distance. That is, for a catastrophic encoder, Bd or Ad are not finite,

and the probability of error is not bounded. Although the minimum free distance of

these codes can be as large as other "good" codes, the bad mapping between the

information paths in the trellis and the code sequences yields this catastrophic effect.

This catastrophic property can be simply eliminated for binary linear convolutional

codes, as we will see in the next chapter.

We have seen in section 1.4.1 that if we use a BPSK or a QPSK constellation

to send binary code sequences, the Euclidean distance between code sequences is

proportional to the Hamming distance between them. However, using codes on these

constellations may not be the best technique to achieve a large Euclidean distance

at a given transmission rate. In fact, achieving a large distance may well require to

use non binary code sequences, or equivalently other signal constellations. The next

section will show with a simple example of a block code that non binary codewords

can eventually reach a better Euclidean distance than binary codewords at the same

24

0 1 x

0 0 1 0

1 1 0 1

0 1

0 0

0 1

Table 1.1: Addition and multiplication in the binary field.

rate.

1.5 Construction fields for codes

Different fields can be used to construct codewords, the simplest one being the binary

field. The binary field provides a multiplication and an addition described in table

1.1. The addition and multiplication are commutative, and the multiplication is

distributive over the addition. This algebraic structure is very interesting for relating

codewords and information words. The codewords can be easily derived from the

information words, and the set of codewords becomes linear, which makes the analysis

of the code much simpler, since the minimum distance can be computed by computing

the minimum weight of nonzero codewords. Moreover, the addition between two bits

indicates the Hamming distance between them. Numerous block codes can be derived

by using algebraic techniques based on the binary field, such as Bose-Chaudhuri-

Hockengheim (BCH), or Reed-Muller codes [6, 8].

More complex fields are q-ary fields F = Fq with q _ 2. These fields still provide

a finite field algebraic structure, but often codewords have to be converted back to

25

a binary equivalent vector in order to be transmitted. This is the case for Reed-

Solomon codes [7] for which codewords are constructed on fields with q = 2 t with t

integer strictly greater than 1. However, it was shown recently that similarly to the

transmission of binary codes using BPSK or QPSK, it is possible to transmit codes

over Fq using q-PSK constellation and keeping a proportional relationship between the

Hamming distance over Fq and the Euclidean distance between transmitted codewords

[15].

The most general field is F = IR. This field can provide the best distance between

codewords at a given rate. However, the algebraic structure of the real field has not

yet been useful in designing good codes. A method called coded modulation consists

of designing binary convolutional codes and mapping binary outputs to real numbers.

The mapping is done in such a way that a large Hamming distance for the binary

code yields a large Euclidean distance for the resulting real code. This technique

called mapping by set partitioning was first introduced by Ungerboeck [3], and is used

a lot in present applications such as telephone modems or satellite communications,

where the bandwidth, and therefore the rate is limited. This technique, however,

only provides a subclass of all real codes, and extensions of these techniques will be

described in Chapter 4.

The two block codes shown in Figure 1.9 demonstrate the difference between using

real number codes and binary codes; Figure 1.9 shows two block codes composed

of 3 two-dimensional codewords. Thus, the rate of both codes is 1/nlog2(M) =

1/2 log2(3) = .79. The binary codewords are restricted to four positions in the space

: {-1,-1},{-1,1},{1,-1} and {1,1}, while the real codewords can be anywhere, thus

26

providing a larger minimum distance for the same average energy per code use.

Binary field Real field

- "4

/," _\
f

f----_.

,i

1,1 '

f

2,_dE=4 d E 6

Figure 1.9: M = 3, n = 2 block codes in the binary and real fields.

The problem of designing real number codes is that there is no algebraic concept

equivalent to the linearity on the binary field, which prevents us from simply comput-

ing the minimum distance by computing the minimum weight of nonzero codewords.

Geometrically, this means that every codeword in the code does not have the same

distance spectrum with its neighbors. The point of using coded modulation, that is a

binary code mapped on a signal constellation, is that it is easier to control the linear-

ity of the code by selecting a good mapping. New definitions for real number codes

have been introduced over the recent years by Forney [15], and mapping between

finite groups and signal sets have been proposed by Loeliger [16]. In this dissertation,

these different concepts will be described in details, and the superiority of real codes

over binary codes will be shown using bounds on the distance and code constructions.

In the next section, an overview of the dissertation is presented.

27

1.6 Overview of the dissertation.

Historically, binary codes have been studied because of their easy implementation and

algebraic structure. Some important code constructions and decoding techniques were

found and implemented. Although the connection between a geometrical problem

called Sphere Packing, which studies how many spheres of a certain radius can be

packed in a given portion of the space, and the design of codes had been discovered in

the very early ages of coding theory, only recent research has proposed using Sphere

Packing to design codes and to bound the performance of codes. In particular, the

Sphere Packing problem shows that binary codes are not the best codes that one

can construct for a given transmission rate. On the other hand, the discovery of

trellis codes has provided ways of performing soft decision decoding and increase the

dimensionality of the coding space.

In the next chapter, we will develop some of the algebraic terminology used with

binary convolutional codes, and the problem of constructing convolutional codes with

a large free distance will be presented. A new approach for calculating the free

distance of rate 1In convolutional codes will be introduced, and new construction

techniques, along with tables of some new binary codes, will be given. It will be shown

that algebraic techniques first introduced for block codes can be extended to describe

convolutional codes. However, other techniques are better to actually construct good

codes (statistical in this chapter, and geometric later in the dissertation), as opposed

to block codes for which algebraic techniques can lead to the construction of very

good codes.

28

In chapter 3, the Sphere Packing problem and its relation to coding theory will be

presented. Bounds on the distance of binary and real number block and trellis codes

will be derived and plotted in order to give motivation to the reader for constructing

real number codes as opposed to binary codes. This chapter will present a summary

of all the best existing bounds on the distance of real and binary codes. These bounds

will be compared to constructions later in the dissertation.

In chapter 4, we will introduce real number trellis codes based on Ungerboeck's

decomposition of signal sets using partitioning, mapping, and underlying binary con-

volutional codes. Then, the basic improvements in Ungerboeck's techniques will

be described, such as the use of lattices for constructing the constellation, multi-

dimensional constellations as Cartesian products of lower-dimensional constellations.

This will lead to the general definition of real number codes, and the construction of

some low rate codes using simulated annealing on the n2 k+m parameters of the code.

In chapter 5, the concept of geometric uniformity for real number trellis codes

will be presented as an extension of the linearity concept for binary convolutional

codes. This will lead to a new description of real number trellis codes using a decom-

position of the trellis topology in order to construct a geometric structure leading to

good geometrically uniform real number trellis codes. This decomposition leads to a

construction algorithm for optimizing simultaneously the constellation and the code

by using geometric considerations. Numerous codes are constructed for various rates,

and improvements over usual trellis codes are noted.

Finally, the conclusion will summarize the different points of the thesis and review

the new construction techniques and the codes presented in the dissertation. The

29

unification of the construction theory for binary and real number trellis codes using

geometric considerations will lead to recommendations for future work such as the use

of an algebraic techniques for executing geometric construction algorithms. Also, the

concept of shaping will be shown to be applicable to the new codes with optimized

distance in order to increase the overall gain.

CHAPTER 2

BINARY CONVOLUTIONAL

CODES

Although binary convolutional codes are a subclass of trellis codes, they were discov-

ered before the general class of trellis codes. Viterbi first used a trellis to represent

the code sequences in order to implement the Viterbi algorithm [13]. In fact, binary

convolutional codes are generated by a set of shift-registers that create a finite state

machine, thus yielding a trellis structure.

2.1 Definition

A binary convolutional code is a trellis code with an encoder as represented in Figure

2.1 for which the connections can be described by the elements of a k × n generator

matrix of binary polynomials. The generator matrix is given by

G(D) =

g(°)(D) g(ol)(D) ... g(n-1)(D)

gl°)(D) gl_)(D) ... g_n-1)(D)

• . .

g_°_)i(D) g(_,(D) ... g(__I')(D)

(2.1)

3O

31

where g}J)(D) for i = 0... k - 1 and j = 0... n - 1 is a binary polynomial. It is then

possible to write the information sequences as a k-tuple of input binary polynomials

U(D) = (u(°)(D), u(1)(D),..., u(k-1)(D)) and the encoded sequence is given by

V(D)=U(D)G(D), (2.2)

where V(D) = (v(°)(D),v(1)(D),...,v('_-X)(D)) is a n-tuple of output binary poly-

nomials.

/

/

//

U(D)

k shift-registersof lengthm

i
'\

\

\
\
k

\

\

\

'\V(D)

u(W")(D) i

'*-"i

/

/' /

/:

Figure 2.1: Binary rate k/n convolutional encoder.

An algebraic manipulation on v(D) = v(°)(D")+ Dv0)(D")+... + D"-' v<"-') (D")

yields

k-1

v(D) = _ u(i)(D")g,(D), (2.3)
i=O

gi(D) = g}°)(D") + Dg}X)(D '_) +... + D"-lg}")(D ") for 0 < i < k - 1 is calledwhere

composite generator polynomial for the ith input.

32

Equation (2.3) is particularly interesting for k - 1, i.e. for codes of rate 1/n, since

the code is completely defined by one composite generator g(D) as follows

v(D)=u(D'_)g(D). (2.4)

For further descriptions of convolutional codes, see [9, 11, 17].

Binary convolutional codes are interesting when trying to optimize the free dis-

tance, since the way they are generated makes them linear, which simplifies the

computation of the free distance as seen in the introduction. In addition, the search

for good codes is simplified to a search for good generators. However, the search for

generators consists of searching for 2 m possible generators for each position in the

generator matrix, which leads to kn2 m possible generators. This limits the constraint

length as well as k and n. The simplest rate in terms of number of generators is the

rate 1/2 convolutional code, for which exhaustive searches have so far lead to codes

with constraint length up to m = 18.

Similarly to block codes, some algebraic techniques have been derived for con-

structing convolutional codes. Some techniques based on the construction using block

cyclic codes [18] which present the same polynomial notation as convolutional codes

have lead to codes that have a free distance far below the distance of optimum convo-

lutional codes [19, 20] with same rate and constraint length. The problem associated

with using cyclic codes to construct convolutional codes is that one cyclic code gen-

erator must be transformed into kn convolutional code generators. Since the weight

of a code sequence is really the sum of the weights of the n code sequences in out-

put, the n generators complement each other in order to produce the best possible

33

minimum weight. This interaction is difficult to realizewhen cyclic codesare used

to construct convolutional codes. In order to avoid the problemof many generators,

another algebraicconstruction was basedon the use of quasi-cycliccodes [21, 22]

which have exactly the samestructure than convolutional codes,except that they

aredecomposedinto finite blocks. However,theseconstructionsdid not leadto good

convolutional codeseither. These failed attempts to construct convolutional codes

algebraically led researchersto call block codesalgebraiccodes,while convolutional

codesarecalledmoreoften probabilistic codes.

Based on this concept, we develop a new way of looking at the construction of

generatorsfor binary convolutionalcodes.This new ideatries to exploit the statistical

propertiesof a goodgenerator. In order to doso, wehaveto goback to the definition

of the freedistance,and try to incorporate the correlation coefficientsof the generator

in anew formula for computing the weightof a codesequence.In the next section,we

will transform (2.4) and showthat the weight (numberof l's) of a codesequencecan

be expressedas a function of the correlations of the generatorand the information

sequence.

2.2 On the weight of binary convolutional code

sequences

In order to evaluate the free distance of a binary convolutional code, we have to

compute the minimum weight of any code sequence. For rate 1/n codes, we have

shown that a simple expression to find the code sequence from the information and

the compositegenerator is to use(2.4). Then the free distancesimply becomes

34

dlre_ = min w(u(D'_)g(D)). (2.5)
_,(O)#=o

Thus, the main problem in computing the free distance of binary convolutional codes

is the difficulty of computing the weight of the product of two binary polynomials.

The goal of this section is to introduce a new way of computing the weight of code-

words. For this purpose, we derive a formula giving the weight of the product of two

binary polynomials as a function of the correlations of the polynomials. First, we

will evaluate the modulo-2 sum of a set of binary numbers, and then apply it to the

coefficients of a product of polynomials.

2.2.1 On the weight of the sum of two binary numbers.

For the purpose of evaluating the weight of the sum of a set of binary numbers, we

will evaluate the binary sum in the integer ring.

Lemma 2.2.1 Let (x,y) be two elements from the binary field F = {0, 1}, let @

(x_ • for large sums) denote addition in the binary field and + (_z2 for large sums)

denote addition in the integer ring I. Then,

xOy=x+y-2xy. (2.6)

Proof. We can simply check (2.6) for every possible case:

100=001=0+l-0=l, and000=0+0-0=0.

We now generalize (2.6) to a set of n binary numbers:

101=1+1-2=0,

Lemma 2.2.2 Let Xo, Xl,...,x,,-1 be n elements ofF. Then,

35

E @x, = Exi- 2 xixj +4 xixjxk -... (2.7)
i=o i=o \o=i<j \o=i<j<k

Proof.

Xo, Xl,...,xn-1. Let x,_ be an element ofF. Then,

@xi = @xi
i:0 k i:0

The formula holds for n=2 (See (2.6)). Suppose (2.7) holds for n, i.e., for

Ox,. (2.8)

By applying Lemma 2.2.1,

_(_Xi"_i----O i----_1i__0@Xi+Xn _ 2(i=_oi=,,-1Gxi)x,,. (2.9)

Thus,

)$xi = _ xi - 2 xix j + 4 xixjxk - ... (2.10)
i=O O=i \O=i<j] O=i<j<k

So (2.7) holds also for n+l, and therefore, by induction, (2.7) is satisfied for any n.

2.2.2 On the product of two binary polynomials

We now use (2.7) to derive a general formula on the weight of the product of two

binary polynomials.

Lemma 2.2.3 Let a(D) _i=deg_= z-,i=o aiD i, and b(D) _--_i=degb= z_,i=O biD i where ai E F and

b, E F for any i. Let c(D) = a(D)b(D). Then,

i=deg aTdeg b

c(D) = y_ ciD i, (2.11)
i=0

where 1

36

deg a +deg b

el = y_ @ajb__j. (2.12)
O=j<i

Proof. By convolution of the two polynomials within F.

For simplicity, we will use the notation a(D) _=_= _i=o al Di with ai = 0 for i >

deg a. The weight of c(D) is then given by the sum of its coefficients in I. So,

i_OO

w(c(D)) = _ ci.
i=0

(2.13)

Thus,

)w(c(D))= _ ea b,_j . (2.14)
i=0 O=j<i

The first sum is in the integer ring, since we are adding all the ones in c(D) to compute

the weight. The second sum is in the binary field, since we are dealing with binary

coefficients. We now transform the binary sum into an integer sum, by using (2.7).

This yields the following lemma.

Lemma 2.2.4 Let a(D) i=oo= _i=o ai Di and b(D) _=oo= _i=o biDi, where ai C F and

bi E F for anyi > O. Letc(D)=a(D)b(D). Then,

('_-"\,:o'=_)('_)b' -2 k=oo ,=_o(._...,,,=o)(,___]oo)w(c(D)) = 1,.--., ai Z 1,...., aiai+k bibi+k +4... (2.15)
k i=0 k=l \ i=0

Proof. For a given i E I, let xj = ajbi_j and use (2.7) to transform (2.14) as follows:

'_ (_",=o o=j<,q)ajbi-J) = '_(_-],=o\o=./<,ajb'-/-2 (o=j<,<,_ a'ibi-jatb'-')-I-4...) (2.16)

ldeg means degree of the polynomial

37

This yields:

w(c(D))-y_aj _ bi_j-2 _ aja, _ bi_jb,_l+4... (2.17)
0=j 0=j<i 0=j<l O=j<lKi

By changing variables, (2.17) becomes

k=O

(2.18)

In order to express (2.15) differently, we need the following definitions of the

correlation coefficients of polynomials:

Definition 2.2.1 Let a(D) be a polynomial with coefficients ai. Then, we define the

0 th correlation coefficient ofa(D) by

R0_ = _ a{, (2.19)
i=0

the first correlation coefficients by

RI_(j) = _ a,a,+j,
i=0

where j > 0 and more generally the k th correlation coefficients by

(2.20)

im_OO

Rk_(jl,j2,...,jk) = _ aiai+j, ...ai+jl+...+jk,
i=0

(2.21)

where ja, j2,..., jk are k integers strictly greater than O.

Using these definitions, we are able to write (2.15) differently, which leads to the

following theorem:

Theorem 2.2.1 Let a(D) _.i-_ ai Di and b(D) i=_= = _i=o biDi, where ai E F and

bi E F for any i > O. Let c(D) = a(D)b(D). Then,

w(c(D)) = Ro_Rob - 2 _ RI_(j)Rlb(j) + 4 _ R2_(j,k)R2b(k,j) -... (2.22)
j=0 j,k=O

38

Proof. Follows from Lemma 2.2.4 and definition 2.2.1.

We now relate the weight of rate 1/n convolutional codewords to the formula

obtained in Theorem 2.2.1, which will allow us to derive an expression for the free

distance of these codes.

2.3 Weight of rate 1/n convolutional codewords

Let g(1)(D), g(2)(D),..., g(n)(D) be the n generator polynomials of a rate 1/n convolu-

tional code C. Then, let g(D) be the composite generator as defined in (2.4). For any

information sequence u(D), the code sequence is generated by v(D) = u(D '_)g(D).

This leads to the following lemma:

Lemma 2.3.1 Let g(D) be the composite generator of a rate 1/n convolutional code.

g

given by

is the information sequence, then the weight of the code sequence v(D) is

w(v(D)) = Ro_,Rog -

oo

2 y_ nl_,(j)Rlg(nj) + 4 _., R2,_(j,k)n2g(nk, nj) -...
j=o j,k=o

(2.23)

Proof. Let Rk,_(j, , j2, . . . , jk) be the U h correlation coefficient of u(D), where jl , j2, . . . , jk

are k integers strictly greater than O. Then the k th correlation coefficient of

p(D) = u(D") is

{ Rk_(ak a _ divides jl,j2,...,jk

Rkp(ja,j2,...,jk) = n, n ,'", ,_) if n (2.24)

0 otherwise

39

So, by using Theorem 2.2.1 and (2.4), we obtain:

w(v(Dl) = Ro Ro
j -_ oo O0

- 2 y_ Rlp(j)Rxg(j) + 4 y_ R2p(j,k)R2g(k,j) -...
j=O j,k=O

Using (2.24), this yields

j -_ O0 O0

w(v(D)) = Ro_Rog - 2 y_ R,u(j)Rlg(nj) + 4 _ R2u(j,k)R2g(nk, nj) -...
j=O j,k=O

(2.25)

(2.26)

This Lemma gives a useful way of computing the weight of a codeword. The

following example helps us understanding the meaning of Lemma 2.3.1.

Example 2.3.1 Let u(D) = D t with t an integer, t > O.

integer k, k > O, R_=(jl,j2,...,jk) = 0. So,

Then Ro_ = 1, and for any

w(v(D)) = [Cog = w(g(D)). (2.27)

Let u(D) = D t + D _ with t and r integers, r > t > O. Then

w(v(D)) = 2R0g - 2Rxg(n(r - t))

= 2w(g(D)) - 2a,9(n(r - t)). (2.28)

For example, with g(D) = 1 + D + ... + D s, where s is an integer, s > O,

w(v(D)) = 2(s + 1) - 2(s - (r - t) + 1) = 2(r - t) (2.29)

if (r - t) <_s.

This Lemma can also be used for the construction of codes with large free distance.

First, we introduce two parameters related to the free distance of a trellis code. The

row distance of order l of a convolutional code C is defined by the minimum weight

40

of code sequences up to length l. It is an upper bound to the free distance of the

code since there may always be longer sequences with lower weight, and it converges

to the free distance as the length of sequences l goes to infinity. It is defined by

d, = min w(u(D n)g(D)). (2.30)
,_(D)¢0

degu(D)<l

Another parameter called the column distance corresponds to the minimum weight

of nonzero paths of a certain length. It is different in the sense that paths have not

necessarily remerged to the all zero sequence as it is needed for code sequences. It

corresponds to the weight of the projection of code sequences onto a finite number of

dimensions. Therefore, it represents a lower bound on the free distance. Although the

column distance also converges to the free distance as the projection length increases,

it usually converges slower to the free distance, since it does not really represent the

weight of code sequences but rather the weight of truncated sequences.

Note that for catastrophic encoders, the bad mapping between the information

sequences and the code sequences yields a difference between the limit of the column

distance and the row distance as their order increases. For catastrophic encoders,

there are unmerged long paths with low weight. Thus, the row distance of finite

order l does not converge to the free distance. In order to check whether an encoder

is catastrophic, we can simply check that the greatest common divisor (GCD) of all

generators is 1, as proved by Massey and Sain [23]. It is important to check whether

a code is catastrophic when searching for the best code, since catastrophic encoders

yield a very bad probability of information bit errors.

41

For our problem,weare interestedin the row distancesinceour formula givesthe

weight of an entire codesequence.In particular, Lemma 2.3.1providesa new way of

computing the row distanceof a rate 1/n binary convolutional code. The following

theorem relatesthe calculation of the row distanceto Lemma2.3.1.

Theorem 2.3.1 Let C be a rate 1//n convolutional code. Then the row distance of

order l of C can be computed as:

dl min Ro_Rog - 2 Rl_(j)Rlg(nj) + 4 _ R2,(j,k)R_g(nk, nj) -...
_(D)¢O

deg u(D) <1 j,k=O

(2.31)

Proof. Follows from Lemma 2.3.1.

Theorem 2.3.1 gives a formula for computing the row distance of any rate 1/n

convolutional code. In the next sections, we will see how to use this formula for

constructing good convolutional codes. At the present time, most of the techniques

for finding good codes are based on exhaustive search or random search such as

simulated annealing. However, (2.31) can be used to direct the search towards good

codes. Two algorithms are proposed in the next sections.

2.4 Algorithm I to constructing good convolu-

tional codes

From Theorem 2.3.1, and example 2.3.1, the generator polynomial of rate 1/n convo-

lutional codes has the following properties:

• The weight of the generator (Rog) of rate 1/n convolutional codes is greater

than or equal to the free distance. For good codes, it is generally equal.

42

• Any information sequence of weight 2 must generate a codeword with weight

larger than the free distance, so for any l > 0,

2R0g - 2Rlg(nl) >_ djre,. (2.32)

Therefore, if df_e_ = Rog, for any l > 0,

1

Rlg(_21) __ _P_0g, (2.33)

thus,

maxRlg(nl) < 1
, _ _Rog. (2.34)

Thus, in order to construct good convolutional codes, it is necessary to find gener-

ator polynomials for which the weight of the generator is as large as possible, and the

maximum first correlation coefficient is at most equal to a half of the weight. This can

also be seen as generating finite binary sequences with low auto-correlation, such as

pseudo-random sequences [24]. However, except for particular lengths of sequences,

there is no systematic algorithm describing the construction of sequences with low"

auto-correlation.

Our idea is to start from the all l's generator. The weight of the generator

is maximal, but correlation coefficients are very large also. So, we replace 1 by 0

where it is advantageous in order to decrease the large correlation coefficients of the

sequence. For this purpose, we can define a potential function that indicates which

position is best to replace a 1 by a 0, and then iteratively replace ones by zeros in the

generator until (2.34) is satisfied. The goal of the potential function is to decrease

large correlation coefficients. Positions which affect large coefficients should therefore

yield a large potential

43

Definition 2.4.1 Let g(S)(D) be the generator polynomial of a rate 1/n convolutional

code at step s Let "('+l)¢ r)_ be the generator at step s + 1 obtained by replacing a 1• v(j) _j

by a 0 at the jth position of g(S)(D). The potential function of gO)(D) is defined by

n(m+l)--I

f(j)= _ R_;)(k)Aj(k), (2.35)
k=O

where

-- .tClgo) _, (2.36)

This potential function is a function of the position where a 1 can be replaced by

a 0, and shows a maximum where it is advantageous in order to decrease the high

correlation coefficients in g(S)(D). Aj(k)shows the difference of R_)(k) by changing

1 into 0 at the jth position of the generator. We multiply a weight to this function

where coefficients are large. Thus, different variations of this definition are possible

such as

n(m+l)-I

f'(/) = _., (R_;)(k))2Aj(k), (2.37)
k=O

or

n(rn+l)--I

f"(j) = Y_ (R_;)(k)- 2Rog)Aj(k), (2.38)
k=0

This leads to the following algorithm [25]:

Algorithm I:

Step 1: Let g(Z)(D) = E_(o +z)-z D i, corresponding to the all l's

generator, s = 1.

44

Step2: Computer(j) forj=l,2,...,n(m+l).

Step 3:

Step4:

Let j0 be a position for which f(j) is maximum.

g(_+l)(jo) = O. s = s + 1.

Step 5: Compute

Step 6:

Step 7:

6 = 2Rog - 2 max Rl])(k).
k=l,2 n(rn+l)-2

If 6 < Rog, go to Step 2.

If the code is catastrophic, go back to Step 2.

(2.39)

Step 8: Compute df_e. Stop.

Figure 2.2 shows the potential and the correlation functions of the generator of

a rate 1/2 convolutional code with constraint length 20, after different numbers of

steps in the algorithm. The curve delta represents 2Rog 2R (s)- lg (k). Its maximum

corresponds to 6. When 6 becomes smaller than the generator weight, we stop the

algorithm. In the example shown in Figure 2.2, we obtain a generator for which

R0g = 23. When we compute the free distance of the code with generators given by

g(1) = (111001001010011001111) and g(2) = (110101010001100010111) and the code

has only a free distance of 20.

The advantage of this method is its deterministic aspect. No search for codes

is required. Unfortunately, this algorithm only guarantees a distance for inputs of

weight 1 or 2. It does not insure that other inputs will lead to codewords of weight

larger than the free distance. However, it is possible to use higher order correlation

45

80

60

40

20

0

First step

"_lg

80

60

40

20

0

4th step

l ////

0

50

50

80

60

40

20

0

2nd step
/

/
/

/
/

3t"

/// _1/0elta o

80 i

60-

40-

/

20-

0

J

Last ste

tN-_-
_1 I III

i i i i
IIII

,N-A-?"t-

J J

50

f(j)

-....R,,

50

Figure 2.2: Algorithm I at different steps.

46

coefficients in the definition of the potential functions, and pursue the algorithm until

conditions equivalent to (2.34) are satisfied for higher order correlation coefficients. It

seems, however that no simple potential function leads to better codes, by pursuing

the algorithm with higher order correlation coefficients. Figure 2.3 shows the free

distance for rate 1/2 convolutional codes constructed by using Algorithm I.

As we can see in that figure, it is possible to find generators with much larger

constraint lengths than with any algorithm involving search. However, the problem of

computing the free distance for these large constraint lengths codes remains unsolved,

and only an upper-bound determined by computing the row distance for information

sequences of length up to 13 is given for codes with constraint length greater than 16.

Thus, it has been impossible so far, to know whether this algorithm gives good codes

also for large constraint length. Yet, since the codes found have good free distance

for short constraint length, it strongly suggests that larger constraint lengths codes

are also good.

A problem of Algorithm I is that we are not using the entire formula given in

Theorem 2.3.1 but rather only the first terms, depending on the complexity of the

potential function. The row distance of order 1 and 2 is often equal to the free

distance for optimal codes. However, the drop of the row distance at higher order

prevents these codes from reaching the free distance of optimal codes with the same

constraint length. Therefore, we need to use Lemma 2.3.1 for larger orders of the

row distance. Also, another more common approach with convolutional codes is to

authorize some search, in order to allow us to find good codes among a larger subset

of codes. By allowing search, we look for codes with a particular distance, which was

47

90

80

70

60

50

40

30

20

10

0
0

d_ree

Optimal

},

Upper bound on dfree

Row distance of order 13

Algorithm I

I
I
I
I
I

I I I I I I i I I

10 20 30 40 50 60 70 80 90

constraint length

100

Figure 2.3: Simulation of Algorithm I for rate 1/2 codes.

48

not the casein Algorithm I. Thus, the goal of a searchalgorithm is to reduceasmuch

as possiblethe number of codesthat one needsto look at. This leads to another

algorithm describedin the next section.

2.5 Algorithm II to constructing good convolu-

tional codes

As it was noted previously, for most of the good codes with large enough constraint

length, the weight of the generator Rog equals the free distance. (all rate 1/2 codes

with m >__4, all rate 1/3 codes with m >_ 2, etc.). It was also noted that only genera-

tors presenting pseudo-random statistical properties can lead to a large free distance

since they present small correlation coefficients. Therefore, it looks interesting to start

from a random generator with R0g = d.rr_, where dj_,¢ corresponds to an expected

free distance of the code we want to construct. Then, as for a simulated annealing

approach [26], we try to change successively some bits of the generator such that the

free distance equates the weight of the generator.

In order to indicate which bits are advantageous to change, we can use Theorem

2.3.1 as in Algorithm I. From (2.31) indeed, it can be seen that any k th correlation

coefficient should be relatively small for k odd, and relatively large for k even. Yet,

since all correlation coefficients are involved in (2.31), it is not obvious which coeffi-

cients are responsible for a bad distance. Therefore, it is necessary to check for the

weight of the code sequences resulting from different information sequences, and in

the case of a code sequence with weight less than the expected free distance, change

the responsible correlation coefficients.

49

In order to proceedwith a certain order, it is reasonableto usean algorithm to

compute either the row distanceor the free distanceof a code to determine which

information sequenceleadsto a 'bad' codesequence.Onesimple algorithm for com-

puting the row distanceconsistsof checkingfor all possibleinformation sequencesof

a certain length starting with a 1.

The main idea of the algorithm is to modify the correlation coefficentsin an

increasing order, since the high order correlation coefficientsaffect codewordsfor

information sequencesof large weightonly. Therefore,if a first correlation coefficient

is 'bad', it will be corrected already when information sequencesof weight 2 enter

the encoder. So the algorithm will successively change the sequence until no 'bad'

correlation coefficient leads to a low weight codeword for information sequences up

to a certain length So. Thus, the algorithm is the following:

Algorithm II:

Step 1 : Randomly choose a generator g(D) such that Rog = dfre,,

where df**, is the requested free distance, s = 2.

Step 2: Compute the weight of the code sequence generated by

every information sequence starting with a 1 of length s.

Step 3: If for all sequences, the weight of the code sequences is

larger than dlr** , and s <_ So, then s = s + 1, go to Step

2. If s = So, go to Step 8.

Step 4: If an information sequence u leads to a codeword with

Step 5:

Step 6:

Step 7:

weight lower than d:_, then the sequence u of weight

w is declared 'bad', and all the correlation coefficients of

g(D) involved in (2.31) are computed starting from the

highest order, i.e., w - 1.

The first correlation coefficient that can either be de-

creased (for odd order) or increased (for even order)in the

list of coefficients computed in Step 4 is declared 'bad'.

If the bad correlation coefficient needs to be decreased, a

1 is replaced by a 0 in a randomly chosen position among

all the positions that affect that particular correlation

coefficient. Another 0 is replaced by a 1 in a randomly

chosen position among all the positions that will allow

the bad correlation coefficient to decrease, s = 2. Go to

Step 2.

If the bad correlation coefficient needs to be increased, a

0 is replaced by a 1 in a randomly chosen position among

all the positions that affect that particular correlation

coefficient. Another 1 is replaced by a 0 in a randomly

chosen position among all the positions that will allow

the bad correlation coefficient to increase, s = 2. Go to

Step 2.

5O

51

Step 8: The code is guaranteed to have a row distance at step So

greater than the expected dire,. Stop.

As it is, algorithm II does not insure that the free distance of the code equals

the one requested at the beginning, but rather that the row distance for information

sequences of length up to s0 equals the distance requested. As So increases, the

probability of having the free distance equal to the requested distance goes to one.

The larger R0g is, the less probable we will find a code that has that free distance,

and the longer the search will last. In the case for which R0g is greater than the free

distance of any code of that constraint length, the search will not end, since no code

exists with dlr_ = Ro9.

Algorithm II can easily be adapted to an algorithm that computes the free dis-

tance, which will allow us to be sure of the free distance of the constructed convo-

lutional code, but will limit us in the constraint length of the code that we want to

construct.

Table 2.1 and 2.2 show some rate 1/2 codes constructed up to constraint length

m = 27, with expected d/_ = m + 3, and number of codes searched limited to

10000, as well as one code with constraint length 50 and expected d:_ = 45. The

generator is given in octal form, so 70 and 64 correspond for example to 1110 and

1101. Ad represents the order of multiplicity of the paths with weight dy,e_. Figure

2.4 shows the result of the simulation of algorithm II for rate 1/2 convolutional codes

with expected free distance dl,._= m + 3

Algorithm II also allows to consider the multiplicity of paths with weight the free

52

m

10

11

12

13

14

15

16

17

18

19

20

gl g2

70 64

66 46

57 31

564 704

722 654

265 647

6474 5130

6136 5612

4713 6255

32274 63304

51262 72236

63133 71161

442734 533224

543646 655222

744743 645047

6227254 4032474

6372112 5223626

6511203 5675311

d'1,._. Ad number of tries

6 5 2

7 2 15

8 3 14

9 1 4

10 8 8

11 5 4

12 7 6

13 5 13

14 7 76

15 1 577

16 7 527

17 6 248

18 7 255

19 5 7830

19 1 944

20 6 141

22 1 612

22 10 30

*: d}r_e represents the expected free distance, and corresponds to the actual computed
free distance up to m = 16, and to do = dx = ... = dla for m > 16.

Table 2.1: Table of rate 1/2 convolutional codes constructed for constraint length

3<m<_20.

53

m

21

22

23

24

25

26

27

5O

gl g2

77112254 56304604

25744422 45750516

42132372 57102627

434641534 661705444

623520432 504741376

706170627 553023125

2743320364 4127623014

61132446441721446 40340350254005377

d_r_, Aa number of tries

23 1 529

24 38 3

24 1 8113

24 1 1111

25 17 824

26 19 3246

26 2 7

45 2 22

• : d_r_e represents the ex:)ected free distance, and corresponds to the actual com-

puted free distance up to m = 16, and to do = dl = ... = d13 for m > 16.

Table 2.2: Table of rate 1/2 convolutional codes constructed for constraint length

21 <m <27andre=50.

54

45

40

35

Optimal codes

15

10

5 f I I

0 5 10

3O

t-

.-_ 25

20
Algorithm II codes

I l I I I I I

15 20 25 30 35 40 45

constraint length m

5O

Figure 2.4: Simulation of Algorithm II for rate 1/2 codes.

55

distance. It is indeed possible to add a counter at Step 3 of the algorithm, such that

if the multiplicity gets larger than what is expected, it declares the last sequence that

leads to a codeword of weight dlr_, 'bad' and jumps to Step 4. This algorithm allows

us to find a large number of codes with much larger constraint length than previously

constructed codes. The main problem of the algorithm is that we are not sure whether

the free distance of the constructed code equals the row distance computed at step so.

In particular, as the constraint length increases, it becomes impossible to compute

the minimum free distance of the code. A test that we can add to the algorithm

in that case is to check whether the generator matrix corresponds to a catastrophic

encoder. This is a simple algebraic verification which allows us to make sure that no

infinite information sequence yields a low weight code sequence. However, this test

does not insure whether long finite information sequence of length greater than So do

not lead to low weight code sequences.

2.6 Conclusion

Although binary convolutional codes can be described using algebraic notations, no

algebraic construction has so far lead to good convolutional codes. In this chapter,

we have presented a new approach based on a statistical method for directing the

search towards good code generators. In particular, this method showed us that good

binary codes are usually constructed by trying to maintain the distance given by the

generator, that is, the shortest diverging and remerging path on all other paths. This

concept will be used again later when we construct trellis codes over the real field.

56

In the following chapters, we are going to extend our construction field to real

numbers. We will show indeed that the minimum free distance that one can reach with

real number codes is greater than with binary codes. However, we will see that the

algebraic structure of the real field has so far not lead to a generator description, and

the lack of linearity between code sequences makes it even more difficult to construct

good codes. In the next chapter, we are presenting bounds on the free distance

of binary and real number trellis codes, in order to understand the motivation for

constructing codes over the real field.

CHAPTER 3

BOUNDS ON THE DISTANCE

OF BLOCK AND TRELLIS

CODES

This chapter describes the general method for lower and upper bounding the minimum

distance of block codes, and the free distance of trellis codes. In particular, the

channel coding problem is comparable to the geometric problem of sphere packing,

which studies the number of spheres of the same radius that can be packed into a

given n-dimensional space. If the codewords are seen as the centers of n-dimensional

non-overlapping spheres of the same radius, the minimum distance between any two

codewords can be lower bounded by twice the radius of these spheres. Therefore, to

prove the existence of codes with a certain minimum distance, it is sufficient to prove

the existence of the corresponding sphere packings. The problem is quite different

for binary codewords, because the binary n-dimensional space is a sampled version of

the entire n-dimensional space, which restricts the centers of the spheres to a given

set of positions in the space. In particular, the centers of the sphere are restricted to

an n-dimensional hypercube, which affects the minimum distance that one can reach

with a binary code.

57

58

The purposeof this chapter is to summarize the present state of the art in bound-

ing the distance for binary and real block and trellis codes. Section 3.1 discusses

the problem of sphere packing and applies it to the problem of deriving asymptotic

bounds on the minimum distance of block codes. Section 3.2 reviews bounds for finite

length block codes, and Section 3.3 focuses on trellis codes. Both non asymptotic and

asymptotic upper bounds, as well as asymptotic lower bounds, are presented.

3.1 Sphere packing and asymptotic bounds on

the minimum distance of block codes

The sphere packing problem is an old geometry problem that studies the number of

spheres that can be packed into a space in n dimensions. The same problem applied

to cubes is easy to solve, since there is no wasted space; however, spheres cannot be

packed without losing space. The amount of space lost when packing spheres depends

on the dimensionality of the space. A sphere in JR" with center u = (ul,..., u,,) and

radius r consists of all the points x = (xl,...,xn) that satisfy

(zl - ul) 2 + (x2 - u2) 2 +... + (zn - u,,) 2 = r 2. (3.1)

A sphere in one dimension is simply a segment as shown in Figure 3.1, and there-

fore no space is lost over the real line. In dimensions greater or equal to two, some

space is lost. In order to evaluate the amount of space lost between the spheres, the

concept of packing density is introduced. The density A of a packing corresponds to

the proportion the volume used by non overlapping spheres of the same radius situ-

ated in a larger sphere to the volume of that sphere. As the volume of the large sphere

increases, this ratio converges to a limit called packing density. For each dimension

59

n, there is an infinite number of ways to pack spheres into the space. However, one

type of packing called lattice packing is particularly interesting, because it provides

a simple evaluation of the density. A lattice packing in n dimensions is defined by n

centers vl,..., v,_ such that any center v of the lattice can be expressed by the sum

n

v = _ kiv,, (3.2)
i----1

where ki, for i = 1,...,n, are integers. The set ofn points in n dimensions (Vl,...,v,_)

forms a basis for the lattice, and if the coordinates of these basis vectors in an m-

dimensional orthonormal basis with m > n are

V 1 -_- (Ull,_)12,...,Ulm),

U 2 _ (V21,V22_.. ,,U2rn),

(3.3)

V,_ = (V,_l, Vn2, • • • , Vnm),

then the generator matrix of the lattice is defined by

Vll

?)21

M=

'Onl

Thus, the density can be computed by

A

where

Y12 "'" _lm

V22 " " " _2m

"On 2 • . . l)nr n

Yn r n

(det(MMT))I/2'

_n/2

(3.4)

(3.5)

y.- r(n/2)+ 1 (3.6)

6O

A,=I

(n=l)

=.9069

(n=2)

,/ _,/ '\/ "\

':,:)

=.7405

(n=3)

t' t
k

/" / :;

J /.

Figure 3.1: Best packings in 1, 2 and 3 dimensions.

Although lattices are particular types of packing, they are simpler to construct

than other packings, provide a formula for computing the density, and, most impor-

tantly, lead to bounds on the density of all types of packings in n dimensions. That

is, a lower bound on the density of the best lattices also represents a lower bound

on the density of any sphere packing. Also, because of the linear structure of most

binary codes, codewords form lattices, and upper bounds on the density of lattices

can be used to upper bound the minimum distance of codes. The following section

presents lower and upper bounds on the density of lattices, which will be used later

to derive lower and upper bounds on the distance of codes.

61

3.1.1 Bounds on the density of lattices

It was shown by Minkowski [27] that there exist lattices with density satisfying

(3.7)

where Z(n) = Ek___1k-". This means in particular, that as n approaches infinity,

log 2 A _> -n + 1. (3.8)

However, Minkowski's proof is not constructive and no method is known to construct

lattices with such a good density.

The first upper bound on lattice densities was found by Rogers [27], who showed

that

,_ < o'n, (3.9)

where crn is defined by the ratio of the volume of the part of a regular n-dimensional

simplex of edge length 2 covered by spheres of radius 1 centered at the vertices of the

simplex to the total volume of the simplex. Table 3.1 gives a,_ for the first l0 values

of n [28]. We will use these values to upper bound the minimum distance of block

codes in section 3.2. Also, in the limit as n goes to infinity, this proves that

n

log zx___-g. (3.10)

However, recently, Kabatiansky and Levenshtein [29] used linear programming

method to prove that the maximal number A(n,O) of points situated on an n-

dimensional sphere separated by at least an angle 0 verifies for large n and 0 < 0 < rr / 2,

1 log2A(n,O)< l+sin0 z l+sin0 1-sin01og 21-sin0 (3.11)
n - 2sinO 1°_2 2sinO 2sinO 2sinO

62

dimension n

5

6

7

8

9

10

Upper bound on the density A

1.000

.9069

.7796

.6478

.5257

.4192

.3298

.2568

.1981

.1518

Table 3.1: Upper bound on the density of sphere packings for n < 10.

which for 0 < 63 ° simplifies into

log 2 A(n,O) < --_ log2(1 - cos0) - 0.099. (3.12)

It can be shown that the packing density can be upper bounded by

< (sin _)nA(n + 1,0), (3.13)A

for 0 < 0 < _r, thus yielding for 0 = 63 °,

log 2 A < -0.599n, (3.14)

as n goes to infinity.

In the next section, the relation between the sphere packing problem and error

correcting codes will be studied. This will allow us to first derive lower and upper

bounds on the minimum distance of block codes, and then use those bounds to de-

velop bounds for trellis codes. Although the bounds are not always tight enough to

indicate the distance of existing codes, they will provide a comparison of the possible

performance of real and binary codes.

63

3.1.2 Relation between code distance and packing density

Let us consider a large sphere corresponding to the maximum power nP that one

wants to transmit per n-dimensional codeword. Figure 3.2 shows such a sphere for

2 dimensions. Let M be the number of n-dimensional spheres of small radius r that

one can put in the large sphere. From the definition of the sphere packing density, in

the limit as M approaches infinity,

MV,_r n = AV,_(np) _/2. (3.15)

Since the minimum squared Euclidean distance d} between the centers of the small

spheres is equal to

d_ = (2r) :, (3.16)

then

lim d_ = 4nP(A)2/".
M--*eo

(3.17)

/// ._

Figure 3.2: Distance between codewords packed in a maximum energy sphere.

64

3.1.3 Asymptotic bounds on the minimum distance of block
codes

Real number codes

In (3.17), the distance corresponds to block codes of dimension n. Using this rela-

tionship, an asymptotic upper bound on the Euclidean distance of block codes can

be derived by using (3.14) which yields for R not too small (M large)

2-0.599n

d_ < 4nP(9-_)2/n, (3.18)

1 log 2 M. However, for R small, M is to small to use the ap-where the rate R =

proximation (3.17), and it is necessary to directly upper bound the minimum squared

Euclidean distance by using (3.11) and noting that the distance between two points

situated on an n-dimensional sphere and separated by an angle 0 is a_ = 4nP sin2(_).

Thus, by inverting (3.11), we obtain an upper bound on 0 as a function of R, which

yields an upper bound on d_. For 0 < 63 °, that is for R > .34, this simplifies into

(3.18).

Theorem 3.1.1 The minimum squared Euclidean distance d2E of a real number

block code with rate R > .34 and large n is upper bounded by

d} < nP 2,_2R
- 2o.198 (3.19)

For R < .34, O is upper bounded by

1 + sin0 1 + sin0 1 - sin0 1 - sin0
R < log 2 (3.20)- 2sin0 2sin0 2sin0 l°g2 2sin0 '

which yields an upper bound on _E = 4nPsin2(_) •

65

An asymptotic lower bound can also be derived for R large (M large) by using

(3.8). Indeed, in the limit as M goes to infinity a_E = 4nP(-_) 2/'. Thus, since

A _> 2 -'_ as n goes to infinity,

2-n

d2E >_ 4nP(-_) 2/". (3.21)

However, the Gilbert-Varshamov asymptotic lower bound on binary block codes [30]

is given by

R > 1 - H2(-_), (3.22)

for all n, where dg is the Hamming distance and

H2(x) = -x log 2 x - (1 - x)log2(1 - x) (3.23)

is the binary entropy function. Since this lower bound is valid for binary block codes,

it is also valid for real number codes with d_: = 4PdH. This yields the following

theorem.

Theorem 3.1.2 The minimum squared Euclidean distance d2E of a real number

block code is lower bounded by

d2E >_ max(4nPH_(1 - R),nP2 -2a) (3.24)

Proof. Follows from (3.21) and (3.22).

Note that for R < .41, the Gilbert-Varshamov bound is the best bound, for

R > .41, (3.21) is the best bound.

66

Binary block codes

Binary codes are restricted to a sampled version of the entire Euclidean space. For

that reason, it is necessary to use algebraic arguments to derive tight bounds on

the Hamming distance of the code, which is proportional to the squared euclidean

distance after modulation. The main problem for binary block codes is determining

the function A(n,d), which is defined as the maximal number of binary vectors of

length n that can be found with the property that any of two of the vectors differ in

at least d places. In particular, the rate of the code R is related to A(n, d) by

R= -l log_ A(n,d). (3.25)
n

Mc Eliece, Rodemich, Rumsey and Welch [31] proved that for 0 < d/n < 1/2,

R(n,d) < min {1 + h(u 2) h(u2 + 2du 2d_ - --+)}, (3.26)
O<u<l-2d/n n ?2

in the limit as n goes to infinity, where h(x) = //2((1 - v_- x)/2). In the range

.273 < d/n < .5, the minimum in (3.26) is attained at u = 1 - 2d/n, so the bound

simplifies to

R<H2 _ d 1- . (3.27)
n

In order to compare this bound with the bounds for real codes, assuming we send bi-

nary codewords using BPSK, d_ = 4Pd, thus inverting (3.27), we obtain the following

theorem.

Theorem 3.1.3

transmitted using BPSK modulation is upper bounded by

d2E <2nP(1-_l-4(_-H21(R))

The minimum squared Euclidean distance of a binary block code

2

). (3.28)

67

The best lower bound on R comes from the Gilbert-Varshamov bound, thus the

following theorem gives an asymptotic lower bound on the minimum squared Eu-

clidean distance of binary block codes.

Theorem 3.1.4 The minimum squared Euclidean distance of a binary block code

transmitted using BPSK modulation is lower bounded by

d2E >__4nPH_'(1 - R) (3.29)

The asymptotic lower and upper bounds on the minimum squared euclidean dis-

tance for binary and real number block codes described by theorems 3.1.1, 3.1.2, 3.1.3,

and 3.1.4 are represented in figure 3.3. Note that the upper bounds for binary and

real number codes are almost equal for R < .2. This graph shows that for R > .2, the

upper bound for binary codes starts being lower than the upper bound for real number

codes, for R > .4, the lower bound on real number codes starts being greater than the

lower bound for binary codes, and for R > .75, there exists real number codes that

reach a greater distance than any binary code, since the lower bound for real number

codes crosses the upper bound for binary codes. This shows that for rates greater

than .75, real number codes are asymptotically better than binary codes of the same

rate. Finally, for R > 1, binary codes cannot provide any euclidean distance, since

no redundancy is added to the information sequence, whereas real number codes can

still provide some distance.

68

Figure 3.3: Asymptotic lower and upper bounds on the minimum squared Euclidean

distance of binary and real block codes: (a): Real codes upper bound, (b): Real codes

lower bound, (c): Binary codes upper bound, (d): Binary codes lower bound

3.2 Non asymptotic bounds for block codes

69

The main problem which arises when trying to compute non asymptotic bounds on

the distance of block codes is to estimate the best sphere packing for finite sets of

points, which is not as simple as the asymptotic problem. In particular, for block

codes of rate lower than 1, we can use the simplex bound which evaluates the distance

between the points of a simplex structure in n dimensions. This gives a good upper

bound as long as the number of codewords is smaller than the number of points in an

n-dimensional hypercube, that is, as long as M < 2 '_, i.e. k < n. This bound on the

number A(n, d) introduced in the previous section was derived by Plotkin [32] and is

given by

dA(n,d) <_ 2 2d- n

for n < 2d,

Roger's bound on lattice density seen in the previous section

(3.30)

and d = d2E/4. This bound is equivalent to the regular simplex bound or

2nPM
J2 < (3.31)
aE M -- 1"

Therefore, this bound applies to codewords constructed on the real number field, but

becomes too weak for rates greater than 1.

For binary codes, which always have rates lower than 1, this theorem can be

strengthened by the Hamming bound [32]

1 +"" + 5 _ 2", (3.32)

where d = 25 + 1. This be tightened by using the Johnson bound [32]

7O

A(n,25 + 1) 1 + 1 + "'" + 5 + [6--_1J _< 2". (3.33)

Moreover, if the binary code is linear, Griesmer [33] derived a bound using the

generator matrix of the binary block codes

k-1 d

Er -I s ,.,. (3.34)
i=0

However, for rates greater than 1, the number of codewords that must be con-

structed in]R_ is strictly greater than the number of vertices in the n-dimensional

hypercube, and the simplex bound becomes weak. It is therefore necessary to put

codewords on a larger space than the n dimensional hypercube. In that case, it is

worthy using the sphere packing problem which estimates the maximum number of

codewords separated by a squared euclidean distance a_E in an n-dimensional sphere.

Since the average energy of the block code is smaller than the maximum energy used

to send an n-dimensional symbol, we can use (3.17) to upper bound the distance by

d2E <_ 4nP(M)21n. (3.35)

The density A can itself be upper bounded by Roger's bound seen in (3.9). Table

3.2 gives the upper bound on the normalized distance per dimension computed from

(3.35) for code rates greater than 1, and from the minimum between the Hamming

bound, the Griesmer bound and the Johnson bound for rates lower than 1. Note

however, that for rates greater or equal to 1, table 3.2 gives an upper bound on the

distance normalized to the maximum energy needed to transmit any codeword. This

71

n

1

2

3

4

5

6

7

8

9

10

n

1

2

3

4

5

6

7

8

9

10

1 2 I 3 4 5 I 7 8 I 9 I 10
4.0000.2500.0620.0160.004 0.0000.0000.0000.000
4.0002.0000.4530.2270.113 0.0280.0140.0070.004
4.0002.6671.3330.5340.336 0.1330.0840.0530.033
4.0002.0002.0001.0000.569 0.2850.2010.1420.101
4.0003.2001.6001.6000.800 0.4440.3370.2550.193
4.0002.6672.6671.3331.333 0.5940.4710.3740.297
4.0003.4292.2861.7141.143 0.7280.5980.4900.402
4.0003.0002.0002.0002.000 1.0000.7120.5990.503
4.0002.6672.6671.7781.778 0.9500.8890.6980.598
4.0003.2002.4002.4001.600 1.2000.9050.8000.686

11

0.000

0.002

0.021

0.071

0.146

0.236

0.330

0.423

0.513

0.597

I 12

0.000

0.001

0.013

0.050

0.111

0.187

0.271

0.356

0.440

0.520

13

0.000

0.000

0.008

0.036

0.084

0.149

0.222

0.299

0.377

0.453

14

0.000

0.000

0.005

0.025

0.064

0.118

0.182

0.252

0.323

0.394

15

0.000

0.000

0.003

0.018

0.048

0.094

0.149

0.212

0.277

0.343

k

I 6
0.001

0.057

0.212

0.402

0.586

0.748

1.143

1.007

1.333

1.600

k

I 16
0.000

0.000

0.002

0.013

0.037

0.074

0.123

0.178

0.237

0.299

I 17

0.000

0.000

0.001

0.009

0.028

0.059

0.101

0.150

0.204

0.260

18

0.000

0.000

0.001

0.006

0.021

0.047

0.082

0.126

0.174

0.226

19

0.000

0.000

0.001

0.004

0.016

0.037

0.068

0.106

0.150

0.197

I 20

0.000

0.000

0.000

0.003

0.012

0.029

0.055

0.089

0.128

0.171

Table 3.2: Upper bound on d}/nP for (n,k) block codes

energy is greater than the average energy over all possible codewords. Therefore, it is

possible to construct some real block codes for which the euclidean distance divided

by the average energy is greater than the value indicated in the table, even though it

is an upper bound.

These bounds are shown in Figure 3.4 for rate k/10 block codes with 1 _< k _< 20.

Note that for rates greater than 1, only real number codes can reach a nonzero

distance. For rates lower than 1, the real number codes can reach a better distance

than binary codes for almost all rates. These results using non asymptotic bounds are

72

consistentwith the resultsgivenby the asymptotic bounds in the previoussection. In

the next section,wewill usethesenon-asymptoticboundson the minimum distance

of block codesto deriveboundson the free distanceof binary and real trellis codes.

2

de
nP

4

3.5

3

2.5

2

1.5

1

0.5

0 X X

0 X

X

X
O000B

X
X

x : Real number codes

o : Binary codes

X
X

X X X X
XX

_ ' ' CCCCCcCCCO02 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

_n

Figure 3.4: Upper bounds on the minimum squared Euclidean distance of binary and

real block codes of finite dimension n = 10 sent with maximum energy nP.

3.3 Trellis codes

Upper bounds for trellis codes are based on upper bounds for block codes, since

trellis codes can be seen as a set of code sequences of length varying from [_] + 1 to

infinity. Thus, all code sequences of a certain length constitute block codes for which

asymptotic and non asymptotic upper bounds are known. Therefore, the minimal

upper bound over all possible sequence lengths constitutes an upper bound for trellis

73

codes.For trellis codes,we first recall the non asymptotic boundson the freedistance

for real and binary block codes,and then derive asymptotic upper boundsbasedon

Calderbank,Mazo, and Wei's method [34].

3.3.1 Non asymptotic upper bounds for trellis codes

The first non asymptotic bound for real number codes was given by Calderbank,

Mazo, and Wei [34], who based their upper bound on the Plotkin upper bound for

block codes, seen in (3.31). They noted that every path of length l through the trellis

determines a vector of dimension nl. Supposing that A and B are two trellis states,

the number of paths from A to B of length l is MAB(I) = 2 kt-''. Assuming nP is the

average energy to transmit an n-dimensional symbol, there exists a pair of states A

and B such that the energy to transmit any of the MAB(I) codewords is lower than

InP. (3.31) allows us to upper bound the squared free Euclidean distance between

two nl-dimensional codewords taken among M nl-dimensional codewords packed in

a sphere of energy lnP. Thus,

21nPM
(3.36)

d_E(l) <- M-1

Taking the minimum over all possible paths of length I for l varying from [_] + 1

to infinity, we obtain an upper bound on the squared free Euclidean distance of the

trellis code. Therefore, letting t = l - [_-],

dl,.e, _< 2nP mint>l[2 tT' Z 1 + t . (3.37)

In particular, this generalizes Heller's bound [35, 36] for binary linear convolutional

codes for which P = 1 to transmit one bit, and assuming we are sending binary digits

74

using BPSK, the Hamming distance equals 1/4 of the squaredEuclideandistance

(seeSection 1.2),

Note howeverthat the sameproblem that exists for block codesoccursfor trellis

codeswhen the rate is lower than 1, sincethe Plotkin or simplexbound is weakwhen

the rate of the block code is greater than 1. Although convolutional codesalways

have2m-m < 2'_l, it is not the case for real number trellis codes with rates lower than

1. This was first noted by Pottie and Taylor [37] who used tighter bounds as those

derived in section 3.2 for small block codes. As expected, their bound is much tighter

for codes such as Ungerboeck's trellis codes [3] when k increases. We will use their

bound in the next chapters to compare our constructions with the upper bound.

As in section 3.2, it is also possible to tighten the bound for linear binary convolu-

tional codes by using the Griesmer bound. Using (3.34) and considering all paths that

diverge and remerge from the all zero state after [_1 + i, i = 1,2,..., the minimum

squared Euclidean distance must verify

where d1_ee H = d}r_,/4.

It has been shown that it is possible to apply all upper bounds derived on block

codes to trellis codes. In particular, in [37], Pottie and Taylor use sphere packing

argument to tighten the upper bound for trellis codes constructed on certain con-

stellations, and in [38], Calderbank and Pottie derive upper bounds based on the

Johnson bound (see (3.33)). For asymptotic upper bounds, Costello derived bounds

75

for binary convolutional codes[39]. The first technique to derive asymptotic upper

bounds for real number trellis codeswasdiscoveredby Calderbank, Mazo and Wei

[34]. In the next section,wegive the result of their bound, showthat their result is

only an approximation of the correct bound for certain code rates, thus yielding a

slightly lesstight bound for certain rates. We also use this bound to derive a new

upper bound for binary convolutional codes,which is more dependenton the rate

than Costello'sbound.

3.3.2 Asymptotic upper bounds for trellis codes

Real Trellis Codes

Calderbank, Mazo, and Wei derived an asymptotic upper bound on real trellis codes

by bounding it with a sequence of suitably chosen block codes for which upper bounds

can be derived using the most recent results in Sphere Packing on the packing density

(see Section 3.1.1, 3.11 and 3.12). In particular, they prove that if there exists a trellis

code with distance dlree and average transmitted signal power nP per symbol, then

for any a > 0 with (1 + a)m/k an integer, there exists a Euclidean block code with

average power per dimension lower than P, rate R _> (a/(1 + a))k/n, dimensionality

n'= (1 + a)mn/k, and minimum distance dmi,, _> d}r_,/n'.

This allows them to upper bound the free distance of a trellis code by an upper

bound on the distance between codewords of a n' dimensional block code of rate

R = (a/(1 + a))k/n. This upper bound is given by Theorem 3.1.1. So, if R =

76

+ > .34, then

dL. < (1+)m,,IkP
-- 20.198

(3.40)

so

d}re, __< min
-- .34tt

"2nmP (1 + a)

20.19Sk 4(o,k/O+a)n)

The right is minimized by choosing a = ((kin)In4)- 1.

.341n4)/(ln4) > 1.06,

6.57mP
d}r,_ <

- 4k/_ '

For k/n < 1.06, we have to use (3.20) in Theorem 3.1.1.

letting a vary, and find 0_ such that

(3.41)

Hence, if k/n >_ (1 +

(3.42)

This can be done by

ak 1 + sin 0,_ 1 + sin 0,_ 1 - sin 0,_ 1 - sin 0,_

(l+a)n- 2sin0,_ l°g2 2sin0_ - 2sin0,_ l°g2 2sin0,_ (3.43)

The upper bound on the distance is then given by

d,.,.,, _< mion4(1 +a)m_Psin . (3.44)

Note that the upper bound in [34] was derived using (3.41) even for rates k/n < 1.06.

Their result is therefore only an approximation of the correct bound for this range

of rates. This is particularly important when comparing the bound we just derived

with bounds on binary trellis codes, since the upper bound on the free distance for

binary trellis codes would be greater than the upper bound on the free distance for

real trellis codes, which is not the case when using the exact calculation of the upper

bound as it was just executed. In the next subsection, we calculate a new upper

bound on the free distance of binary trellis codes based on the same approach but

77

using upper bounds on binary block codes. This allows us to find a tighter upper

bound on the free distance than the one derived by C_stello in [39].

Binary convolutional codes

For binary convolutional codes, we can use the asymptotic upper bound on binary

block codes in Theorem 3.1.3 and apply it to the proof of Calderbank, Mazo and Wei.

Thus, an upper bound on the minimum free squared Euclidean distance of binary

convolutional codes is given by

d'_-min2(l+a)mkP(l-_l-4(2-H21((1 ak_>o+a) n))2). (3.45)

This upper bound and the exact calculation of Calderbank et.al.'s asymptotic upper

bound on the minimum free square Euclidean distance of real number trellis code are

plotted in Figure 3.5.

Here also, we observe that the asymptotic upper bound on the minimum squared

free distance of binary convolutional codes is tighter than the upper bound for real

number codes, especially for rates greater than 1. However, note that for rates lower

than 1, the two bounds are equal, which suggests that as the constraint length in-

creases, the free distance obtained with binary and real number convolutional codes

may be the same. We will see in chapter 5 that the real number codes indeed seem

to perform just as good as binary convolutional codes for large constraint length.

Note that Costello's upper bound on the minimum free distance of binary convo-

lutional codes [39] is given by

lirn dl_e, < 2nPm (3.46)

78

, , ! I i , j i ,

2
d free

mP

.2 2.2

%

I I I I I I _, f [I

0.4 0.6 O.8 1 1.2 1.4 1.6 1.8 2

R=k/n

Figure 3.5: Asymptotic upper bounds on the minimum free squared Euclidean dis-

tance of (a) real trellis codes and (b) binary trellis trellis codes.

79

which dependson n rather than on the rate R. As R decreases, n is forced to go to

infinity, which corresponds to our bound. For other rates, our bound is more specific

than Costello's bound.

In the next section, we will investigate lower bounds on the free distance of trellis

codes. These lower bounds are more difficult to establish than upper bounds, since

they prove the existence of codes that can reach the distance given by the bound.

This requires Gilbert-type [30] counting argument which usually lead to weak lower

bounds instead of the distance achievable by codes.

3.3.3 Asymptotic lower bounds on the free distance of trel-

lis codes

Costello [39] first derived lower bounds on the minimum free Hamming distance of

binary convolutional codes. More recently, Rouanne and Costello [40] have calculated

a bound for real trellis codes based on Ungerboeck's construction [3]. However, Chao

and Chiu [41] have written a comment on that last paper explaining that Rouanne

and Costello's bound uses the linear structure of binary convolutional codes allowing

them to compute the free distance from the all zero sequence, while real number trellis

codes do not necessary present such a property. The new bound that Chao and Chiu

derived is unfortunately much too weak to be useful in practice. We will first present

Rouanne and Costello's bound, which also gives a bound on binary convolutional

codes, and then present Chao and Chiu's comments on the bound calculation.

8O

Lower bound on the minimum free distance of trellis codes

The usual start for the derivation of a lower bound on the distance reached by a code

is the following

Prcec(dl_e_(c) < d) < 1 =_ 3Co E C such that d]_,(Co) > d. (3.47)

In order to bound the distance, it is therefore sufficient to derive an upper bound on

Prcec(d/_,e(c) < d), and force this upper bound to 1, in order to find the free distance

d which can surely be reached by a code. First, if there is a code which has distance

lower than d, then there exists two distinct paths v0 and vD such that the euclidean

distance between them is less than d. This can be expressed as

e_d2e-_4(v°'_;) _> 1, (3.48)

where c_ can be any positive real number. We can upper bound the left side of (3.48)

' thusby summing over all Vo,

e e _>1,

which can be raised to a power p _> 0, yielding

()'e_°e2 _ e -_'a_l'°'¢) _> 1
lff

for all a and p greater than 0. By summing over all correct paths Vo,

(3.49)

(3.50)

e"Od2T_,,o(c) >_ 1, (3.51)

where

(3.52)

Therefore,by averagingoverall possiblecodes,

PrcEc(df,_e(c)< d) < e _''a_ _ p(c)%,,,(c),
cEC

81

(3.53)

for all a and p. The next step consists in expanding the previous sum and switching

the sum over the codes in C with the sum over all possible code sequences v in each

code, as it was first done by Shannon [2] in his derivation of the random coding bound.

This leads to

< p(v) ,
cEC v t=l

(3.54)

where a sequence v is decomposed into the symbols vt sent at time t. By considering

the topology of the trellis structure, it is then possible to average over all possible

signal labelings on paths with the same topology. This step called configuration

counting by Forney [42] yields

PrcEc(d]_e_(c) <_ d) <_ e_pd_ 2k'°-k"Pe -'pE(_'p), (3.55)
_=u+l

where

E(a,p) _= -In p(s) _ p(s')e -_d_(''¢) , (3.56)
s'ES

where s and s' are symbols of the signal constellation S, and p(s) the probability of

transmitting s.

By forcing the right term of (3.55) to be strictly less than 1, Rouanne and Costello

obtain a lower bound on the free distance of trellis codes

{ E(a,p) O[E(a,p)]'_

max _ _ -t- "_) ,d}_ > E(a,p)>kln2
(3.57)

a>0
l>p>0

82

where v = re�k, and O[E(a,p)] = ln(ef'[g(o,0)-k_21- 1)'/'.

This bound can be converted to a lower bound on the free distance of binary

convolutional codes by considering the n-dimensional hypercubic constellation used

to send binary code sequences. Example 3.3.1 gives an expression for the bound

applied to rate 1/2 binary convolutional codes.

Example 3.3.1 For a rate 1/2 binary convolutional code, we use a QPSK constel-

lation. Thus, by considering a code where each symbol of the constellation can be sent

with equal probability, we obtain

1 4a'"

As m becomes large, (3.57) becomes

(35s)

SO

_{>
max krn , (3.59)d}ree E(a, p) > In 2

a>O

which corresponds to

lim _ree
-- > 1.57, (3.60)

rn--*oo m

lim dfreeH-- > .785, (3.61)
m--,_ m

where d],._ n is the corresponding minimum free Hamming distance between binary

symbols sent with the QPSK constellation. (3.61) is the same bound as the direct

derivation for binary convolutional codes by Costello [39].

This bound is particularly interesting since it depends on the signal constellation

used to construct the trellis code. Therefore, it could be interesting to study how to

83

construct the constellation in order to optimize the lower bound. In particular, the

differencebetweenthe bound for the optimized constellation and the bound for the

n-dimensional hypercube corresponding to the transmission of binary code sequences

could show how much improvement is expected by constructing trellis codes over the

real numbers as opposed to the binary numbers.

However, as mentioned in the beginning of this section, Chao and Chiu [41] have

found a flaw in Rouanne and Costello's derivation of the bound. Specifically, the way

Tc,,p(c) = _ e -¢'d_(v''_') (3.62)
vEC \ v I /

is defined in (3.52) is inappropriate, since it is possible to find an infinite number

of pairs (v, v') with a_E(V , v') _< d, by simply taking all possible semi-infinite paths

starting after v and v' have remerged as shown in Figure 3.6. Thus, T_,0(c) may not

be finite, which then makes it difficult to upper bound in the rest of the derivation.

Although Chao and Chiu presented a new correct version of the bound, it is much

weaker than the original bound, and we will not derive it here.

Yet, Chao and Chiu found that the derivation does apply to linear convolutional

codes, since the derivation can then be based on a single transmitted code sequence

per code, which explains why this bound meets the binary convolutional code bound

derived by Costello in Example 3.3.1. The original bound is also valid for geomet-

rically uniform codes, which we will describe into more details in chapters 4 and

.

84

/

\

/\

/ \

/_ _ •

Figure 3.6: Different trellis paths separated by the same distance.

3.4 Conclusion

In this chapter, we have studied asymptotic and non-asymptotic bounds on the mini-

mum distance of binary and real number block and trellis codes. It was observed that

asymptotic lower and upper bounds are greater for real number codes than binary

codes, especially as the rate of the code increases. For the non-asymptotic case, the

difference becomes smaller as the constraint length of the trellis code increases. The

sphere packing problem was introduced to derive the bounds but also to help us un-

derstand the main idea of coding. It involves positioning codewords in the Euclidean

space of finite (block codes) or infinite (trellis codes) dimensionality. While binary

codes are constructed on a specified set of positions in the space, determined by the

binary Z '_ lattice, real number codes can be constructed by using the entire space,

thus providing a better way of achieving the best sphere packing in that space. The

85

following chapters will consider the construction of trellis codes in the real field, and

will introduce a geometric approach to help constructing and understanding how to

achieve a good sphere packing with trellis codes.

CHAPTER 4

LATTICES AND TRELLIS

CODES CONSTRUCTIONS

Real number trellis codes were first introduced by Ungerboeck [3] as a combined

coding and modulation scheme improving error performance without sacrificing data

rate or requiring more bandwidth. In this chapter, the concept of this coding scheme

will be introduced. In particular, concepts as set partitioning of a signal constellation,

the use of lattices to design the signal constellation, and multi-dimensional codes will

be described. The description of this subclass of real number codes will lead to the

general class of real number trellis codes.

4.1 Channel coding with expanded signal constel-

lations

Usual coding schemes consider the design of binary block and convolutional codes

independently from the modulation used to transmit them, since the squared Eu-

clidean distance between codewords transmitted using BPSK or QPSK constellations

is proportional to the Hamming distance between codewords in the binary field (see

Section 1.4). This is due to the fact that the binary numbers 0 and 1 can directly be

86

87

mapped onto the two points of the BPSK, or for the two-dimensional case, 00, 01,

10, and 11 can be mapped onto the four points of the QPSK such that the Hamming

distance between the binary numbers and the squared Euclidean distance between

their representative modulated points is proportional.

Ungerboeck's idea is to use N-dimensional signal constellations with .IV" > 2 y

points, such that more binary digits can be transmitted per time unit. However,

without coding, such a scheme deteriorates the transmission, since the Euclidean

distance between signal points becomes smaller. By adding a block code or a convo-

lutional code in front, it is possible to obtain an overall Euclidean distance between

codewords or code sequences greater than the distance between points in the original

signal constellation with .IV" points. The general block diagram for trellis codes on

expanded signal constellation is shown in Figure 4.2. The k binary information bits

are divided into/c bits entering the rate _:/(_: + 1) binary convolutional encoder, and

p = k -]c bits entering directly the mapper. The _: + 1 encoded bits are then joined

to the other p uncoded bits and mapped to one of the 2n --- 2 k+l points al of the N-

dimensional signal constellation. The trellis structure is then constituted of diverging

paths corresponding to the encoded bits and parallel branches corresponding to the

uncoded bits as shown in Figure 4.1. Note that the binary convolutional encoder also

adds redundancy in terms of number of bits at the output. However, by expanding

the signal constellation from A/" = 2 k points to 2A/" = 2 TM = 2 n points, we can map

this extra bit back to the N dimensional constellation.

Note that the points in the constellation can be represented by their N real num-

ber coordinates. Therefore, the binary code sequences mapped on the constellation

88

2k'E Parallel branches

_JL.

_d k

A

_ .2. _'_"

Encoded path

N-dimensional symbol

Figure 4.1: Trellis structure of a trellis code on an expanded signal constellation.

can also be directly viewed as real number code sequences, and the distance one is

interested in is now the squared Euclidean distance between the code sequences in-

stead of the Hamming distance between their binary representatives. Therefore, the

redundancy added by the code on the binary field does not affect the overall rate R

of the code defined by

k
R = -.

N

The purpose of constructing the real number code sequences by decomposing the

encoder into a binary encoder and a mapper is to use algebraic properties on the

binary field to construct good binary codes, and then use a technique introduced by

Ungerboeck called set partitioning to design good mappers. Since a good binary code

is a code with a large minimum Hamming distance, a good mapper is designed to yield

a large minimum squared Euclidean distance between the signal points associated to

89

large Hammingdistancebetweentheir binary representation.While this mapping is

simpleto realizewhenthe number2'_ of points in the constellation is less than or equal

to 2 N (proportionality between Hamming distance and squared Euclidean distance),

it is not as simple for constellations with more than 2 N points. The set partitioning

technique described in section 4.2 provides a technique to fix the relationship between

the Hamming distance between binary code sequences and the squared Euclidean

distance between the corresponding signal points.

V k

Uk'l
V_+l

U[. -
- - [V_

u_._,, Binary i
, MapperConvolutional ,

I Encoder vl
Ul "_ - ~ lR= J(k+l)
go w- [J

Figure 4.2: Expanded signal constellation trellis encoder block diagram.

Although both binary block codes and convolutional codes can be used in con-

junction with an expanded signal constellation, it is very advantageous to be able to

use a soft decision decoder in order to use the entire coding gain obtained from the

minimum squared Euclidean distance of the code. Whereas algebraic techniques can

efficiently be used to decode block codes over their construction field, trellis codes can

be decoded with soft decision by using the Viterbi algorithm. This present advantage

of trellis codes over block codes motivates us to focus on trellis codes in the remainder

of the dissertation, when constructing real number codes.

The coding gain introduced in Section 1.4.2 corresponds to the savings of energy

when using a coded system as opposed to using an equivalent uncoded system. Specif-

90

ically, for trellis coding with expandedsignal constellation, the coding gain can be

computedas

(4.9_)
Gc./c._, = 10-log10 A02(C._x),

where d_,.,(Cn) is the minimum free squared Euclidean distance of the trellis code

used on the expanded constellation with 2" points and Ao2(C,__1) is the minimum

squared Euclidean distance between any of the 2 k points of the constellation before

expansion.

Example 4.1.1 Let us expand a QPSK (k = 2) constellation into an 8PSK (n =

k + 1 = 3) constellation. For the QPSK constellation,

= 2. (4.3)

Since two information bits can be transmitted during a time interval T, we use a

4-state, rate 1/2 convolutional code combined with an uncoded bit as shown in Figure

4.3, thus yielding 3 bits into the mapper. The corresponding trellis is shown in Figure

4.4. These three bits are then mapped into the 8PSK constellation shown in Figure

4.5. The squared free Euclidean distance between any two code sequences in the trellis

is 4, thus yielding a coding gain

GSPSK/QPSK _" 10 10g10(4/2) = 3 dB. (4.4)

Note that the coded and uncoded systems are equivalent since they both transmit _ bits

per time interval.

91

U0

92

V I

__l

Mapper

V2 V 1 Vo

000 : a o
001 :a_
010:a2
011 : a3

100 : a4
101 :as

110:a6
111 :aT

a i

Figure 4,3:4 state, rate 2/3 8PSK trellis encoder.

101 101 101

01- + . _ ::

"0i-11-I__ 111 Oi :i!-'LI I _I 0:.I_i..i 11-I:" ."011 " _.-- 011 "- 011

"_ 1-01J__-- -- _ 101 _ _'_--_- _ - • _0-1-- :r_.,.
" -_-_ 001 - '- _-_--_ ""_' '_ __ " _ "^"
-_-. --- -_ - :-.... - UU/ ", .._. -__._/ _UU]

......':_.! O0 >," ._:_-_ 1O0)/_, __ 1O0

000 000 000

Figure 4.4:4 state, 1 uncoded bit, rate 2/3, trellis diagram.

QPSK ' 8 PSK I
!11 i

, " .Q _

/'

t

\ / a_ 2

\ /

a7 " al

'1

10-"...... + _,'°01
, Z_ 0 /

1

_ 00
i

t

Figure 4.5: QPSK and expanded 8PSK constellations.

4.2

92

Set partitioning techniques and code construc-

tions

It was mentioned in the previous section that the mapper realizes a one-to-one map-

ping from binary n-tuples into a signal point of the constellation and tries to impose

a fixed relationship between the Hamming distance between binary n-tuples and the

squared Euclidean distance between their representative signal points. In this section,

a method first introduced by Ungerboeck [3] called set partitioning is described.

4.2.1 Set partitioning

A given signal constellation is successively decomposed into subsets of points so that

the minimum squared Euclidean distance between any two points in a subset increases

along the decomposition. The binary labeling associated to each point then depends

on which subset the point belongs to.

Let /ki denote the minimum distance between any two points of a subset after i

decompositions. Note that A0 denotes the minimum Euclidean distance between any

two points of the entire signal constellation, Figure 4.6 shows how the mapping given

in Figure 4.3 is derived by set-partitioning the 8PSK constellation. The parallel

branches of the trellis are then assigned with points from subsets with the largest

possible minimum distance (A2 in this case), and branches joining in and originating

from the same state are assigned with points from subsets with smaller distance (A1

in this case).

The squared Euclidean distance between the signal points sent on two parallel

93

v=0

a o

o u

v2=O , 1
'1

o

o

<

000 1O0

o

v0=O

1

e

o o

a

a

0 '

_IA0 = .765

1

0 /

/

o

• o

o •

a

0 / _ 1
/

• • : o<,

D

010 110 001 101

o

o A

o

r_

o

= 1.414

,A.== 2.00

o

,_ o

0 ,/ 1 I

)

o o o •

a

011

o

111

Figure 4.6: Set partitioning of 8PSK constellation.

branches (see Figure 4.4) is A_ = 4.0, and the minimum free squared Euclidean

distance between any two diverging and remerging paths in the trellis is 2A_ + A02 =

4.585. Therefore, the minimum free squared Euclidean distance of the code is 4.0.

More generally, the minimum free squared Euclidean distance of a trellis code is given

by

d_T,, = min[A_+a,d_,,(f¢)], (4.5)

where Ak+ 1 is the minimum Euclidean distance between parallel branches and dl_,,(_:)

denotes the minimum distance between diverging and remerging paths in the trellis.

4.2.2 Convolutional code construction

94

The trellis code construction is simple for small trellis topologies and small signal

subsets, but it becomes more tedious as the constraint length increases and a system-

atic code construction is necessary. Once the signal constellation is set partitioned,

it is indeed necessary to find the best binary convolutional code associated to a given

mapper. Since the convolutional code is of rate k/(k + 1), it is possible to realize it in

feedback form instead of feedforward as defined in Section 2.1. The feedback form of

an encoder is directly related to the parity-check matrix H(D) of the convolutional

code defined by

G(D)HT(D) =0, (4.6)

where G(D) is the generator matrix of a code as defined in Section 2.1. The purpose

of using H(D) instead of G(D) in our case is that H(D) is defined by only k + 1

polynomials whereas G(D) must be defined by _:× (_:+ 1) polynomials. This decreases

considerably the time to search for the optimal binary convolutional code.

Example 4.2.1

tional code was

In example 4.1.1, the generator matrix of the rate 1/2 convolu-

G(D) = [1 + D2,D],

so the parity-check matrix of the same code can be computed as

(4.7)

The feedback encoder associated with H(D) is shown in Figure 4.7.

D

H(D) = [1 + D 2'1]" (4.8)

j _- V1
I

i

r T ,---1• T ' I = Vo

i

95

Figure 4.7: Feedback encoder for a 4 state, rate 1/2 binary convolutional code used

with a trellis code.

More generally, from the parity-check matrix H(D), code sequences v(D) can be

generated by

[vk(D)'"v°(D)] = [uk-'(D)"'u°(D)] " Ik

0

Hk(D)/HO(D) , (4.9)

HI(D)/H°(D)

where Ik is the identity matrix of size k × k. Note that the maximum number of

binary coefficients to assign over any polynomial HI(D) for 0 < i < _: is [_], thus

yielding an exhaustive search through 2 k different matrices. For each matrix, the

minimum free squared Euclidean distance of the code must be computed. However,

while for linear codes, the free distance can be computed as the minimum weight of

any non zero code sequence (see Section 1.4.3), the free distance of a trellis code with

real number code sequences must be computed between any two possible sequences,

which increases dramatically the computing time. This problem can be solved by

making use of the subset distances resulting from the set partitioning of the signal

constellation. The Euclidean weight w(e) of a binary k-tuple error vector e can be

96

definedas

w(e) = mindE[a(u),a(u + e)], (4.10)

where u can be any binary k-tuple input vector, a(u) denotes its corresponding sig-

nal point, and dE the Euclidean distance between the signal points. Therefore, the

distance between any two sequences u(D) and u'(D) can be lower bounded by

d_[a(u(D)),a(u'(D))] >__w2[u(D) + u'(D)], (4.11)

where w2(e(D)) is the sum of the squared weights of the components of e(D) over

time. Due to the set partitioning technique, the Euclidean weight w(e) of a binary

k-tuple e can be upper bounded by the subset distance Aq(e) corresponding to the

number of trailing zeros q(e) in e. For example, q(e) = 2 for e = (ek-1,...,ca, 1,0,0).

The free distance of the code can therefore be lower bounded by using Bahl and

Larsen's algorithm [43], which computes the minimum free Hamming distance of

binary linear convolutional codes, i.e. involving only the weight computation of non-

zero sequences. That is,

2
d}r_e > AI,._, = min A2[e(D)],

-- e(D)¢0

2 where ei are the k-tuples composing e(D).where A2[e(D)] = EAq(_,),

(4.12)

This lower

2
bound is usually achieved and /_ftee equals the free distance due to the symmetries

in the structure of the constellations. In other words, due to the fixed relationship

between the Euclidean distance between two points in the constellation and the Ham-

ming distance between their corresponding binary labels, it is possible to compute the

free distance by examining all non-zero sequences and associate a Euclidean weight

97

to eachpossiblelabel, instead of a binary Hamming weight as it wouldbe donewith

a convolutionalcode. Note, however,that the Euclideanweight of a symbol, defined

in (4.10), is determinedby a minimum overall symbolsseparatedby the samebinary

label. This implies that somesequenceshavethe samesum in the binary field, but

not the sameEuclideandistance. For most of the codesconstructed by Ungerboeck

on the usualsymmetric QAM modulation schemes,the minimum distanceis the same

from all possiblesequences.This observationhas leadto definition of geometricuni-

formity [15]for real number codesasan extensionof the linearity property for binary

convolutional codes.

Definition 4.2.1 A code with the same distance spectrum from any code sequence

is called geometrically uniform.

In other words, for a geometrically uniform code, the set of distances between any

given code sequence and all the others is the same. In particular, the set of distances

from the all zero sequence is the same than from any other sequence, thus allowing

one to compute the free distance by taking the all zero sequence as reference, as in the

Bahl and Larsen's algorithm to compute free distance. All binary linear convolutional

codes are geometrically uniform since there is a proportional relationship between the

Hamming distance in the binary field and the Euclidean distance when using BPSK

or QPSK constellations. In chapter 5, we will study a new approach for constructing

geometrically uniform codes from a geometrical point of view, rather than algebraic.

We will see that the best geometrically uniform codes are not necessarily constructed

on the usual signal constellations. In fact, while Ungerboeck's technique is very

98

efficient to construct good codes, it's goal is not to construct optimal codes,but

rather to improve the transmissionover bandwidth limited channelsin a simple way.

Different questionsremain about the optimality of this construction technique.

First, are the expanded constellationsoptimal for use with trellis codes ? It will

be seen in the following sections and chapter that the constellation designcan be

improved. Second,is the binary set partitioning techniquethe best for designinga

mapper usedwith a convolutional code ? The next section will show that in some

cases,binary set-partitioning is not alwaysthe best, and that in fact, it should de-

pend on the topology of the trellis and the dimensionality of the signal constellation.

Finally, are binary linear convolutional codesoptimal for reachingthe best minimum

Euclideanfree distance? We will seein the following sectionsthat for someconstel-

lations, non binary convolutional codes can bring some advantages over binary codes

for distance and performance analysis purposes.

4.3 Lattices and non-binary set partitioning

It was first observed by Calderbank and Sloane [44] that most QAM signal constel-

lations can be seen as finite sets of points taken from an infinite lattice. Pursuing

this approach, Forney [45, 46] defined the general class of coset codes based on the

set partitioning of lattices into sublattices for mapping onto a convolutional code.

Let A be an N-dimensional lattice, and A' a sublattice of A, that is a subset of

points of A which is itself a lattice. This creates a partition A/A' of A into cosets.

These cosets are translated version of Ar within A, i.e. one point of the coset defines

99

the entire subsetof points. It is then simple to havea convolutionalencoderto select

oneof the cosetsof the main lattice. An often usedlattice is the Z g lattice, or binary

lattice, defined by the Cartesian product of the one-dimensional set of integer Z taken

from the real Euclidean one-dimensional line.

Example 4.3.1 Consider the Z 2 lattice and decompose it into 4 cosets, which are

themselves 2Z 2 lattices as shown in Figure 4.8. This partitioning technique replaces

the binary partitioning tree introduced by Ungerboeck. Note that in this case, a binary

tree partitioning leads to an equivalent partitioning in two successive operations.

• :T_' • C; (; • © • _) O _) O O O _L' O

:$,:7_ © © ':J O O C: © • Q • • O • Q

• O • © D • O • 0 © 0 0 0 C, O O

0 0 O 0 0 0 0 0 0 • 0 • • 0 • 0

Figure 4.8: 2Z 2 cosets resulting from the Z2/2Z _ partition of the Z 2 lattice.

However, the purpose of using lattices to construct trellis codes is to be able to

use lattices with better sphere packings than the usual Z 2 lattice, and to partition

by using known decomposition of lattices into composing sublattices. Lattices up to

24 dimensions are well known and their decomposition into sublattices can easily be

found in the literature [47]. Most of these lattices are binary, i.e. can be decomposed

into Z t lattices with l < N. Therefore, signal points can be put on a trellis topology

I00

which usually presents a number of diverging branches from each state equal to a

power of 2. However, we will see in Chapter 5 that there exists geometrically uniform

structures that are not lattices, even though they are composed of lattices. These

structures can lead to better codes than the trellis codes constructed on known lat-

rices. In other words, it is not always the best packings in N dimensions which lead

to the best trellis code infinite dimensional sequences. Another purpose of the non

binary tree set partitioning is that it is not always optimal, as example 4.3.2 shows.

Example 4.3.2 Consider a binary Z 3 lattice within cubic boundaries as shown in

Figure 4.9. Suppose we want to decompose the set into 4 cosets of two points. The

binary set partitioning does not lead to the best cosets in terms of minimum distance,

whereas a direct four-way partitioning leads to the _ diagonals of the cube, which is

the optimal partitioning.

Figure 4.9: Binary and four-way partitioning of a 3D cube.

Example 4.3.2 presented a trellis code on a N-dimensional constellation with

N > 2. These trellis codes are called multi-dimensional trellis codes, since they

101

cannot be sent in one time unit T on a modulation scheme using only one frequency.

Usually, such codes are constructed on constellations with N even, which allows one

to decompose the transmission into a finite number of time units T. One way of con-

structing constellations with N even is to take the Cartesian product of 2-dimensional

constellations.

4.4 Trellis codes on multi-dimensional constella-

tions

Wei [48] was the first to investigate the construction of trellis codes over multi-

dimensional constellations. Since block codes present a better minimum distance

as n and k increase, the rate k/n being constant, it seems interesting to increase k

and N for trellis codes as well. In particular, the parallel branches of the trellis as well

as remerging trellis paths correspond to rate k/N block codes. So the minimum dis-

tance between parallel branches should increase with N. However, (4.5) specified that

the overall minimum free Euclidean distance of the code is given by the minimum

between the path distance and the parallel distance. Thus, increasing the parallel

distance does not necessarily increase the overall minimum free distance of the code,

unless it is possible to decrease I¢ while maintaining k. Smaller _: leads indeed to less

connectivity in the trellis, i.e. longer paths, but larger p, i.e more parallel branches.

Another purpose for constructing multi-dimensional trellis codes is to obtain a

larger range of transmission rates. When using 2D constellations, it is indeed possible

to transmit an integer number of information bits per time unit T. 4D constellations

allow one to also transmit k information bits during 2 time units T, thus yielding

102

transmission ratesof k/2 bits per time unit.

The partitioning of multi-dimensional constellations obtained from Cartesian prod-

ucts of lower-dimensional constellations can be done by partitioning the constituent

2D lattices into subsets A, B, C, Different 4D subsets can then be constructed

from the 2D subsets by making pairs of 2D subsets such as (A,A),(A,B),(A,C),...,

(B, C),.... Those 4D subsets present the same minimum distance A_ than their con-

stituent 2D sets. This partitioning technique provides a simple way of partitioning

constellations of higher dimensions. However, since these constellations are obtained

from the Cartesian product of lower dimensional constellations, they do not neces-

sarily correspond to the best sphere packing in higher dimension. This was studied

by Wei [48] for the 8D case. Two constellations constructed from the rectangular Z s

lattice and the best lattice packing in 8 dimensions Es yielded two codes with the

same coding gain over uncoded. We will see in chapter 5 that such an observation is

related to how constellations must be constructed for optimizing the free distance of

trellis codes. They should indeed not necessarily be taken from lattices, but rather

from superimposed lattices.

Also note that the binary set-partitioning is particularly adapted to lattices of

dimensionality equal to a power of 2. Example 4.3.2 showed a 3D constellation

for which the binary set partitioning is not necessary optimal. Similarly, for other

constellations with dimensionality different from a power of 2, the same observation

can be made. In particular, Pietrobon [49] noted that two different set partitioning

can be made on a 6D constellation, and depending on the trellis topology, one of the

two is preferable for obtaining the best minimum free distance.

4.5 Non binary convolutional codes

103

In the previous sections, we have shown that Ungerboeck's technique for construct-

ing trellis codes over the real field provides good but not necessary optimal codes.

In particular, it was noted that the best constellation used with block codes is not

necessary optimal for trellis codes. Also, the binary set partitioning technique in-

troduced by Ungerboeck is not always optimal, depending on the dimensionality of

the constellation and the topology of the trellis code. In this section, we study the

optimality of the field for constructing the underlying binary convolutional code used

before the mapper.

This question was first studied by Massey and Mittelholzer [14] for convolutional

codes mapped on PSK constellations. It is indeed shown that trellis codes over M-

PSK constellations constructed with convolutional codes over Z M exhibit the same

properties than binary convolutional codes, in particular, the distance between two

code sequences can be computed as the distance between the all zero sequence and

another. Thus, the resulting trellis code is linear with respect to the Euclidean dis-

tance. Specifically, a signal point can be represented by the complex number W_ for

0 < i _< M - 1, where WM = e j2r/M. The squared Euclidean distance between two

signal points i and j is thus

d_ = [W_- W_[2 = [1 - WJM-'[2. (4.13)

Therefore, defining the phase weight of the signal point i by

w(i) = ll - W_[2, (4.14)

104

the phase distance between i and j can be computed by

d2E(i,j) = w(j -- i). (4.15)

Thus, considering two sequences vl and v2 with symbols drawn from an M-PSK

constellation, the Euclidean distance between Vl and v2 can be computed as the

weight w(v_ - v2), where the weight of a sequence is computed by summing the

weights of each component in the M-PSK constellation.

In particular, this provides a geometrically uniform code, that is, the minimum

free squared Euclidean distance of the code can be computed from the all zero se-

quence, just as for binary linear convolutional codes. Loeliger [16] extended this study

by describing all constellations for which convolutional codes can be constructed on

groups that match the constellation in terms of linearity properties. The main con-

tribution of this paper is that a signal set is matched to a group, if and only if it is

a translate of what Slepian [50] calls a "group code for the Gaussian channel", that

is a signal set obtained from orthogonal transformations applied to a point of]Ry.

More recently, Trott [51] studied this concept with isometry codes, i.e, a group of

sequences of isometries of the Euclidean space]RN, and applied it to trellis codes.

In general, these new approaches of coding in the real field are trying to define an

algebraic structure matched to the geometrical problem of sphere packing, in order

to find techniques to design and analyse codes. In the next section, we are defining

the most general class of real number trellis codes, and consider a direct approach

for optimizing the set of code sequences without considering any algebraic underlying

code. We will construct some codes with better minimum free squared Euclidean

105

distance than previously constructed trellis codes. However, this technique will be

limited by the number of parameters that need to be optimized, and chapter 5 will

concentrate on constructing real number trellis codes with the constraint of being

geometrically uniform. This new technique will actually lead to the same codes than

those constructed in the following section, and provide an efficient way of reducing

the search, thus allowing us to find longer and more complex codes.

4.6 General class of real number trellis codes

Although the algebraic structure of the binary field provides efficient techniques for

constructing block codes and decoding received codewords, it requires a bandwidth

increase or a data rate decrease, due to the number of redundant bits to add to the

information for protection against noise. This redundancy is not necessary when us-

ing the real field instead, and code rates can be lower or greater than 1, while still

protecting the information against noise. This brought researchers such as Unger-

boeck [3] to find efficient techniques for constructing good trellis codes over the real

field. As it was seen in previous sections, his technique and improvements by other

researchers have lead to very good codes, but the decomposition of the code into an

algebraic binary convolutional code and a mapper into the real field makes it impos-

sible to prove the optimality of the codes found. The purpose of this section and the

following chapter is to start from the most general type of trellis codes over the real

field, and optimize the construction of code sequences over this structure. We will

then compare the new codes obtained and compare them with the codes constructed

with the usual technique.

106

4.6.1 Definition

A real number trellis code is a set of code sequences over the real field related by

a trellis structure. Let C be a rate k/n constraint length m real trellis code with

2 m states and p parallel branches. C is defined by a set of real numbers ai for

i = 0... n2 k+m - 1. The binary information sequence U(D) defines a path through

the trellis and the real code sequence V(D) is the set of real labels on that path.

Starting at a given state s (s = 0,... ,2 m - 1) in the trellis, an information symbol j

(j = 0,...,2 k - 1) produces n outputs asn2k+j,_,...,as,_2k+jn+,__ 1, as shown in Figure

4.10. A general encoder for a real trellis code is shown in Figure 4.11. The set of

shift-registers creates a finite-state machine, which expanded in time corresponds to

a trellis structure. The memory element then selects the label corresponding to the

given state of the trellis and the k binary inputs at this time.

a14 als

ao al ao a z ao al ao al

Figure 4.10: Trellis for a rate 1/2 constraint length 2 real trellis code with no parallel

branches.

107

ks_t_ogist_d _nga.Y_k

/
/

I

ROM

al

Figure 4.11: Real trellis encoder.

Note that a code is a set of code sequences in]R n. The encoder or the labeled trellis

then maps each code sequence to a different information sequence. Even though we

consider binary information sequences, any other type of indexing for the information

sequence is possible. This explains the name of real number trellis codes.

The modulation scheme associated with the transmission of a real number trellis

code is the n-dimensional constellation with signal point coordinates given by the

n-dimensional branch outputs ai. This is comparable to sending binary digits on

a BPSK constellation (n = 1), or pairs of binary digits on a QPSK constellation

(n = 2). Therefore, we can keep the usual definition of the rate R of a trellis code,

that is

k
R = -. (4.16)

n

Since we now consider n = N, in the remainder of this thesis, we will use n instead of

N to denote the dimensionality of the constellation. Note that Ungerboeck specifies

the rate of a trellis code by indicating the rate of the underlying convolutional code

" 108

and what type of constellation is used by the mapper. In our case, we do not specify

any a priori constellation, but rather a number of dimensions for the Euclidean space

on which code sequences are constructed. Ungerboeck also assumes that 2 dimensions

can be transmitted during one time unit by using a QAM constellation. Therefore,

the transmission rate for our trellis codes is 2R bits per time unit T.

For the purpose of comparing coding schemes with each other, it is necessary

to normalize the average energy used to transmit code sequences. This is done by

normalizing the coefficients ai for i = 0...n2 k+m - 1 by

l n2k+m--I

2 1 (4.17)
2k+m E ai -= '

i=0

which corresponds to sending code sequences with an average power of 1. We also

abandon the concept of comparing a given constellation and a code expanded con-

stellation, but rather compare the optimal coded scheme in a certain dimension with

the uncoded scheme in the same number of dimensions, as it is done for binary codes.

Although we should compare optimal coded schemes with optimal uncoded schemes,

i.e. the best packing of 2 k points in n dimensions, we use the Z _ lattice, and take the

2 k points with smallest energy as uncoded scheme. As k increases, this may not give

the best packing and the coding gain shown may be slightly larger than the coding

gain obtained from the best uncoded scheme. Also, for k < n, the best packing for

the uncoded scheme is obtained by using the best rate k/n block code, which is not

always obvious to find. Therefore, when using the Z _ lattice, we can simply compute

the minimum distance between uncoded 2 k points by computing the average power of

all 2 k points with smaller energy separated by distance 1 in the Z n lattice. Example

109

4.6.1describesthe computation for a two dimensionalconstellation.

Example 4.6.1 Figure 4.12 shows a constellation with 27 = 128 points in an n = 2-

dimensional space. For this set of points, the average energy is 20.5, so the minimum

squared Euclidean distance between points with average energy I is dmi,, = 1/20.5 =

2.049. Suppose the free squared Euclidean distance of a trellis code of rate 7/2 is d:re_ ,

then the coding gain by using this code over an uncoded scheme is given by

GaB = 10 lOglo _re_
.049 (4.18)

_f

j/ 1/_ X

X X X

X X X X X

' X X X X X

/ X X X X X X

1

I II X X X _ X

iI

I X X X X X X

i X X X X X X
i

_1 X X X X X X

.... X X X X X X

',, X X X X X

'\

',X X X X X
\

\,

\\

\ X X X

X X X ",

X X X X X'

X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

/
X X X X X X :

/

X X X X X /'/

X X X X X,,//

X X X //

X_...X//_

Figure 4.12:128 points taken from the 2-dimensional Z 2 squared lattice.

Table 4.1 gives a list of the minimum squared Euclidean distances obtained by

using this constellation type for different dimensionalities n and number of points k,

II0

IIkin
1 2 4.00

2 2 2.00

3 2 0.80

4 2 0.40

5 2 0.19

6 2 .095

7 2 .049

1 3 4.00

2 3 2.67

3 3 1.33

4 3 0.57

5 3 0.44

6 3 0.26

7 3 0.17

Table 4.1: Table of minimum distance for Z '_ lattice constellations

when k > n. When k is lower than n, we use the best rate k/n binary block code,

which corresponds to points taken in the Z" lattice also. For n = 2 and k = 3, 4, 5,

we use the standard 8AMPM, 16QAM, and 32AMPM for the uncoded constellation.

Note that the distance reached in this table by 2 k points in n dimensions can be

higher than the upper bound on the distance reached in Table 3.2 in Chapter 3, since

we must recall that the upper bound was given as the maximum distance divided

by the maximum energy of the constellation, whereas here, we are interested in the

maximum distance divided by the average energy of the constellation.

111

4.6.2 Construction of real number trellis codes

While algebraic techniques proved to be useful for constructing binary block codes,

we saw in Chapter 2 that binary convolutional codes need to be constructed by

exhaustive search, since no algebraic method so far has lead to good codes [19, 20, 21,

22]. The exhaustive search consists in examining all possible binary code generators

and selecting the code that yields the largest minimum free distance. This method

is also employed to construct real number trellis codes, when using Ungerboeck's

decomposition and selecting the best underlying binary convolutional code. However,

when constructing directly real number trellis codes, it is necessary to find the n2 k+m

real numbers which optimize the free distance of the code. This presents numerous

difficulties. First, the number of parameters to choose is much larger than for a

binary linear convolutional code, for which only the generator needs to be specified

(rn + 1 coefficients). Second, the density of the real field does not allow us to search

exhaustively for the best real trellis codes, as is done for binary convolutional codes.

And third, the free distance needs to be computed from all code sequences, since the

code is not necessary linear.

Formally, if y, is a code sequence of C of length r, and e_.(C) is the set of all

possible sequences of length r different from y_-, then the free distance of the code C

is defined as

d fr_(C) = min dE(y,y'). (4.19)

Yr EC,ylEeyr (C)

Since it is necessary to compute the minimum free squared Euclidean distance from

all code sequences, we cannot use the Bahl and Larsen's algorithm [43] to compute

the free distance.

which wasdescribedin Chapter 2 as

112

To compute the distance, we use the row distance dt parameter

dr= min w(V(D)), (4.20)
U(D)¥O

degU(D)<l

where U(D) was the binary information sequence specifying the path through the

trellis, and w(V(D)) was the weight of the binary code sequence. In the real field,

we extend this definition to the Euclidean row distance duo(l) of order l from a given

information sequence Uo(D), that is,

duo(l) = rain dE(V(D), Vuo(D)), (4.21)
U(D)¥Uo(D)

degU(D)<l

where dE(V(D), Vuo(D)) denote the Euclidean distance between the real number code

sequence V(D) and the code sequence VUo(D) corresponding to the given information

sequence Uo(D). The row distance indicates the minimum Euclidean distance between

any two possible code sequences up to a certain length, and thus represents an upper

bound to the minimum free Euclidean distance of the code. In order to make sure that

the upper bound equals the exact free distance, we introduce another parameter called

column distance. This parameter corresponds to the Euclidean distance between any

two unmerged path of a certain length. The column distance CVo(1) of order l from a

given information sequence Uo(D) is therefore defined by

Cuo(l) = min dE(V(D), Vuo(D)). (4.22)
V(D):_VUo(D)

deg V(D)<nt

Since the column distance is the distance between any two code sequences trun-

cated after l time units, it corresponds to the distance between the orthogonal pro-

jections of infinite code sequences onto an n/-dimensional space. This represents a

if3

lower bound on the minimum free distance of the code. If the column distance equals

the row distance for any l, then the free distance of the code equals their value. The

difficulty of this approach is that l may be very large before the column distance and

the row distance are equal. In general however, the row distance converges to the

free distance much faster than the column distance. Therefore, it is possible to use

the row distance in the search algorithm and verify with the code found that the row

distance equals the column distance for some I.

The simulated annealing algorithm is a random search algorithm that optimizes

a function of many parameters, which is not necessary simple to study analytically,

or easily computable. In our case, the trellis code parameter that we are interested

in optimizing is the minimum free squared Euclidean distance and the parameters to

adjust are the n2 k+m real number coefficients on the branches of the trellis. In [26],

this algorithm was already used to search for binary convolutional codes, by changing

randomly the binary coefficients of the generator at each iteration. In our case, a

simulated algorithm was implemented as shown by the flow chart in Figure 4.13. For

a given temperature, we perturbate the old coefficients to provoke the growth of the

free distance. If the free distance increases, then we select these new coefficients,

otherwise we select them with a probability depending on the new free distance and

the temperature. After 100 loops, we decrease the temperature and start again.

The idea of this process is based on what happens during the crystalization of a

liquid. If the temperature goes down too fast, then the crystal does not form, since

atoms do not have time to position themselves on time. Here, if the temperature goes

down too fast, we will quickly reach a situation where we only allow the growth of

114

the free distance. Assuming we have reached a local maximum for the free distance,

we will never reach the global maximum of the free distance for this code rate and

constraint length. Therefore, the simulated annealing algorithm allows us to slowly

converge towards a good maximum for the free distance, without being sure, how-

ever that the resulting code is optimal. In particular, as the number of parameters

increases, the temperature should go down slower to allow all parameters to adjust

themselves to the best value.

However, three concepts resulting from the observation of the constructed codes

strongly suggest that the codes found are optimal. First, the distance of the new

codes is usually greater than the distance found with binary convolutional codes,

which corresponds to our expectations. Second, for small constraint lengths, the free

distance in most cases reaches the Heller upper bound [35] (see Chapter 3). Third, the

best codes found exhibit certain properties that indicate that the codes are optimal:

Property 1: A rate k/n real trellis code should be constructed using

2 m superimposed n-dimensional block codes, each with 2k codewords.

The block codewords determine the branch labels on the set of 2 k paths

diverging from each state. This follows from the fact that the branches

leaving each state have not yet remerged and can therefore be thought

of as a rate k/n block code.

Property 2: The block codes should be superimposed in such a way

that the number of nearest neighbor code sequences in the trellis is max-

imized. This can be viewed as applying the philosophy of constructing

11.5

Pick random coefficients a, _,
for i=1 ...rr_ *'_

i
Select temperature T=.I

i
i

, Compute the row distance '

4o of the code defined by

the coeffcients a i

(Perturbate a_

a'b.,,- a,+ _ a_/J'\

(3ompute row distance dl'o')
,, of the new code ,

>d,o:::-No

r:

J
':i a, ..,i-- a;)

] i

N"- N+I ;

T

N= 100 "

F

I Yes

T.,,--.99 T

i N=0

i
d_o

•_ d;,- d,o< --
.... 100.

"'T_yes

- Compute dh. of" i
the code ..

.. 7

j_yes

No

J
V

With probability p= exp(dl°" d'° _''''!

assign a I _ a_ " _/)

No

Increase order of

row distance

Figure 4.13: SimulaLed annealing algorithm to opLimize a real number trellis code.

116

lattices with large density to the construction of infinite-dimensional

block codes.

Property 3: The lattice codes assigned to two states connected to the

same state at the next time unit should be identical, thereby reducing

the total number of lattice codes. This is due to the symmetry of the

trellis.

Example 4.6.2 Let us consider the 4-state rate 1/2 real number trellis code shown

in Figure 4.10. Following rule 1, at each state, a block code with two codewords in

two dimensions should be constructed. The best block code with two codewords in

two dimensions can be constructed by positioning two opposite points on the energy

1 circle as shown in Figure 4.1_. In the case of a binary block code, the points are

restricted to the positions shown by the square. For the real case, the 4 block codes of

two points are not restricted to these 4 positions. Using rule 2, we want to equate the

distance separating the first two diverging and remerging paths of the trellis, that is,

the path of length 3, and the path of length 4. This yields the following equation:

d([ao, all,[a2, a3]) 2 + d([ao, a,],[a4,as]) 2 +

d([ao, el], [as, a9]) 2 =

d([ao, ax],[a2,a3]) 2 + d([ao, al],[a6, a7]) 2 +

d([ao, al], [a12, a,3]) 2 + d([ao, a,], [as, a9]) 2 (4.23)

Using rule 3, state 1 and 3 should use the same block code, and state 2 and _ should

117

use the same block code. This simplifies (4.23) to

d([ao,a,],[a,,as])2= d([ao,a,],[a6,a,])2+ d([ao,a,],[a6,aT])_ (4.24)

Using the notation shown in Figure 4.I4, (4.24) yields

D 2 = d 2 +d 2 (4.25)

Assuming the usual normalization to energy 1, it is also possible to write

D 2 + d 2 = 4, (4.26)

thus yielding

(4.27)

While for the best binary code, the squared Euclidean distance between the first di-

verging and remerging path and the all zero path is 10, and the distance between the

second path and the all zero path is 12, they both equal 10.67 in the real number case.

After computation, the minimum free squared distance of the real code is determined

to be 10.67. This gain in distance corresponds to an asymptotic coding gain of.28 dB

by using the real code as opposed to the binary code.

The previous example showed that by not restricting the points to the squared

constellation (QPSK) used when transmitting binary convolutional code sequences,

it is possible to increase the minimum free squared Euclidean distance of the code.

This distance growth comes from the fact that diverging and remerging paths in a

trellis topology do not have the same length. Thus, when constructing the code over

the binary field, it is not possible to equate the distances between the all zero path

118

+
a'2 ! a'_,

+a_- _......... a._ _xa, '

a,

D

a6
x--+;--,........... r a'--;--

a,2_ ,_+a_,+........ j t%
a_2 -.. +

f

alo
-x
a

0

01

d
i1,,. _

Figure 4.14: Binary and real constellations

119

and diverging paths of different length. Comparing this concept to the block code

problem, it is the same idea than restricting points to the Z n lattice instead of using

the best sphere packing in n dimensions. The best lattice in n dimensions does most

often correspond to the structure for which each point in the lattice has the largest

number of nearest neighbors. For example, in two dimensions, the squared lattice

has 4 nearest neighbors per point, while the hexagonal lattice has 6 nearest neighbors

per point and a better packing density. Here, although we are constructing infinite

dimensional sequences, it is also advantageous to increase the number of nearest

neighbors to the all zero sequence, in order to increase the free distance of the code.

However, recall from Chapter 1 that the probability of error when using a trel-

lis code on a binary symmetric channel with crossover probability p can be upper

bounded by

Pb(E) _ 1Bdjr_2aSr_pdlr_/2 (4.28)
k

where Bd is the total number of nonzero information bits on all weight d paths. Thus,

increasing the number of nearest neighbors also increases 84, and therefore the upper

bound on the probability of error when p is sufficiently large, that is when the SNR is

sufficiently low. The asymptotic coding gain, that is, at high SNR, indeed increases

with the free distance. But at lower SNR, this may not be so advantageous. In order

to have an idea of the improvement by using the real code described in example 4.6.2,

we simulated the performance of both binary and real codes, and the result is shown

in Figure 4.15.

Although the real number code has better free distance than the binary convo-

120

_C
w
o0

-IlO ::::::::::::::::::::: ::

10 .2

Figure 4.15: Simulation of the performance of the best 4 state, rate 1/2 trellis codes.

(a) binary, (b) real number

121

lutional code, the real code doesnot perform as well for low SNR than the binary

code. As we just noted, this is due to the larger number of sequencesseparatedby

the minimum freedistancein the real number codethan the binary code.Therefore,

the gain obtained from this growth of the free distanceis only achievedfor very large

SNR. However,sincethe growth of the freedistanceis alwaysachievedby increasing

the numberof nearestneighbors,wemust realize that our goaldependson what SNR

our channelis working at. For large SNR, wewant to maximizethe freedistance,for

lower SNR, we may rather want to optimize the number of nearestneighbors.How-

ever, the SNR affects the probability of error as a powerof the minimum distance,

whereasthe numberof nearestneighborsis only a multiplicative factor. It is therefore

interesting to first select codeswhich optimize the free distance,and then selectthe

codewith the smallestnumberof nearestneighbor sequences.

4.6.3 Results

We limited our direct construction of real number trellis codes to relatively simple

code rates, since the search time increases exponentially with k and m, and linearly

with n, for the total number of parameters is n2 k+m. Therefore, we only constructed

codes for which the trellis topology did not include any parallel branches, that is for

codes with rates lower than 1. Codes with rates greater than 1 will be constructed

in the next chapter, where we impose geometric uniformity, which reduces the search

time. Table 4.2 shows the distance of our new codes along with the distance of the

best binary convolutional codes of the same rate, the Heller upper bound [35] on the

122

real number codesdistance,and the Griesmerupper bound [33]on the binary codes

distance.

For most codes,the differencebetweenthe two boundscanbegainedby construct-

ing the codeover the real numbers insteadof the binary numbers. Figure 4.16shows

the Griesmerand Heller upper boundsalong with our constructedcodes.Wecan see

that real number codeshave a distancethat reachesthe Heller upper bound, thus

gaining somedistanceoverbinary codeslimited by the Griesmerupper bound. In the

next chapter, wewill construct larger constraint length codesand seethat this im-

provementis the samefor longercodes.As the constraint length increases,however,

the differencebetweenthe Heller bound and the Griesmerbound tends to decrease,

thus reducingthe possibility of improving the distanceby constructing codesover the

real field.

Note also that sincewenormalizedthe averageenergyper symbol to 1, the min-

imum free distanceobtained for code with same k and same m, i.e. same topology,

have almost the same minimum free distance, whatever the dimensionality n is. This

suggests that the topology of the trellis is responsible for the limit on the free distance

rather than the dimensionality of each individual branch. In particular, whereas for

block codes, increasing k and n while keeping the rate constant yields a minimum

distance growth, the trellis code topology requires that we increase m along with k,

rather than n in order to increase the minimum free distance per symbol.

A problem with real number trellis codes is that the concept of catastrophic en-

coder does not really exist since most codes do not have the same numbers on differ-

ent branches, as binary catastrophic trellises do. However, some numbers can be very

123

m

1 i/l

2 i/1

3 1/i

i i/2

2 1/2

3 1/2

4 1/2

1 1/3

2 1/3

I i/4

2 1/4

2 2/3

2

(real codes)

8

8

12

st

10.66

13.33

16

8t

10.66

8

10.5

dfT_

(bin. codes)

1

8

12

_

10

12

14"

6.67

10.66

8

10

(trellis codes)

1/1 BPSK (4)

1/1 BPSK (8)

1/1 BPSK (12)

1/2 QPSK (6)

1/2 QPSK (10)

1/2 QPSK (12)

1/2 QPSK (14)

1/1 (BPSK) 3 (6.67)

i/3 (BPSK) 3 (10.66)

1/2 (QPSK) 2 (8)

1/2 (QPSK) 2 (10)

Upper bound

(real codes)

8

10.67

13.33

8

10.66

13.33

16

8

10.66

8

10.66

Upper bound

(bin. codes)

8

8

12

8

10

12

16

8

10.66

8

10

Table 4.2: Real number trellis codes constructed by a direct simulated annealing

*: non-catastrophic codes.

f: asymptotically catastrophic

Average energy per symbol= 1.

4.3 4 2/3 (BPSK) 3 (4) 5.33 5.33

3.45 2" 2/3 (8QAM)(3.2) 5.33 4

124

close, so there can be long diverging unremerged paths with very low distance be-

tween them. Such a code would perform badly in terms of probability of information

bit errors, since a small error in the code sequence could lead to a long incorrect path.

Therefore, we call these codes asymptotically catastrophic in reference to a paper by

Hemmati and Costello [52] in which they study binary convolutional encoders which

have such long paths with low distance even though the encoder is not catastrophic.

In Table 4.2, the asymptotically catastrophic codes are marked with a t.

3C

25

8
¢-

igl
2C

c

Ill

_15

U_

10

_ :R.a,nu:.u o:r=
-- : Binary number upper bou_ .'"

/.-_x" ×

//

/1 /

/_j//" x x : Best binary code

/ .x + : Best real code

Constraint length m

Figure 4.16: Rate 1/2 binary and real trellis code distances and upper bounds.

4.7 Conclusion

We have seen in this chapter different ways of constructing codes over the real field,

and we noted an improvement for the minimum free distance of the codes corre-

125

sponding to the bounds derived in the previous chapter. Although our simulated

annealingalgorithm is very limited by its slow convergencedue to the large number

of parametersto adjust, we havebeenable to identify somereal number codesthat

have a better free distance than binary codesof the samerate. However,in order

to construct larger codes,it is necessaryto reducethe numberof parametersin our

simulatedannealingwithout reducingour chancesto find better real number codes.

We can observethat someof the codesconstructed have the property of being

geometrically uniform, that is, have the samedistancespectrum from any code se-

quence.This suggeststhat it may be possibleto reduceour searchto geometrically

uniform codesonly, and still obtain an improvementoverbinary codes.Sofar, there

hasnot beenany good technique to systematically construct geometricallyuniform

codes,sinceit is necessaryto usean underlying convolutional codeover a group as

mentionedin Section4.2.2. The next chapter describesa new approachbasedon a

pure geometricconstruction, and wewill seethat the numberof parametersto adjust

by simulatedannealingis dramatically reduced.This will allow usto construct much

longercodes,and note further improvementof real numbercodesasopposedto binary

codes,or trellis codesof rate greater than 1 constructedon usualconstellations.

CHAPTER 5

A GEOMETRIC

CONSTRUCTION OF

GEOMETRICALLY UNIFORM

TRELLIS CODES

5.1 Geometrically uniform trellis codes

The concept of using trellis codes over lR _ for data transmission at high rates was

first introduced by Ungerboeck [3]. The main idea was to decompose a trellis code

into a binary convolutional encoder followed by a mapper that transforms binary

codewords into modulated signals. In order to have a code with large minimum free

squared Euclidean distance, set partitioning was used to maintain a fixed relationship

between the minimum free Hamming distance of the underlying binary code and the

minimum free squared Euclidean distance of the resulting trellis code.

Later on, the concept of geometric uniformity was introduced by Forney [15] in

order to generalize the notion of linearity previously encountered with convolutional

codes. It was noted that some trellis codes were geometrically uniform, even though

the underlying convolutional code was not linear, such as Wei's eight state trellis code

126

127

[53] recommendedin the CCITT V.32 standard. Further, Masseyand Mittelholzer

[54]found that geometricallyuniform codeson PSK constellationscanbeconstructed

by usingconvolutionalcodesoverrings suchasZ,_. This concept was then generalized

by Loeliger [16] and Trott [51], who developed the concept of isometry codes which

relates the algebraic structure of a trellis code to the geometric properties of its signal

set.

Earlier, Divsalar, Simon, and Yuen [55] tried to modify the constellations on

which trellis codes are constructed, and obtained some improvement over regular

constellations. Combining the idea of asymmetric constellations with the concept of

geometric uniformity, Benedetto, Garello, Mondin, and Montorsi [56, 57] developed

some trellis codes over multi-dimensional asymmetric constellations while imposing

the geometric uniformity constraint in order to simplify the performance analysis.

All these approaches view trellis codes as q-ary convolutional codes mapped onto

signal sets whose labels have been assigned using set partitioning techniques. This de-

composition of the signal set labeling and the trellis code labeling makes it impossible

to prove that the resulting trellis code is optimal. A first attempt by Calderbank and

Mazo [58] was made to view the trellis code as a set of real labels directly assigned

to the trellis, but did not lead to a systematic construction. In this dissertation, we

introduce a new method of constructing geometrically uniform trellis codes based on

a geometric construction of the trellis. The most important idea is that for a given

trellis topology, the branches of the trellis which usually contain the generator of a

convolutional code completely define the entire geometrically uniform trellis code,

i.e., m + k branches are sufficient to define the entire trellis code, where 2 m is the

128

total number of states, and 2 k is the number of paths diverging from each state.

The usual technique for constructing trellis codes consists of decomposing a given

signal constellation in order to adapt it to a trellis topology. Here, we decompose

the trellis topology in order to find the best signal constellation for this topology.

This technique allows us to directly search for the signal constellation and trellis code

together which optimize the minimum free squared Euclidean distance between code

sequences with a geometrically uniform constraint.

5.2 Trellis topology and generating branches

A trellis topology T(k,p,m) is entirely determined by the number 2 k of branches

leaving each state, the number 2 p of parallel branches leaving each state, and the total

number of states 2". In this dissertation, we use binary types of trellis topologies,

but they can be generalized to other structures such as ternary trellis topologies with

3 k branches, 3p parallel branches, and 3" states [59]. An example of a T(3,2,2)

binary topology is shown in Figure 5.1. Let us also define k = k- p, where 2 _ is

the number of sets of 2p parallel branches leaving each state. A trellis code can then

be constructed on this topology by assigning a symbol from IR n to each branch of

the trellis structure. A- binary input sequence then selects a path through the trellis

structure, and the symbols along that path are transmitted. The rate R of the code

is then given by

k
R = -. (5.1)

n

129

Assuming that the branch labels are independent of time, there are n2 k+'_ real num-

bers to assign in the trellis. These numbers must be assigned so that the minimum

free squared Euclidean distance between any two diverging and remerging paths is

maximized. Because of the large number of symbols to assign, it is desirable to reduce

this number as much as possible while maintaining an optimum free distance. Even

though it has not been proven that geometrically uniform codes are optimal, it has

been shown that most of the best trellis codes that have been previously designed are

geometrically uniform.

We will now show that by imposing geometric uniformity, only n(m + k) real

numbers need to be assigned in the trellis, and that each n-dimensional symbol must

be taken from a certain type of constellation. First, we decompose the trellis topology

in order to find the best signal constellation, and in the following section, we study

which trellis branches must be specified .in order to construct an entire trellis code.

Figure 5.1: T(3,2,2) topology

5.2.1 Parallel branches

130

Parallel branches represent diverging and remerging paths of length 1. Thus, in

order to optimize the minimum free squared Euclidean distance of a trellis code, we

must optimize the minimum Euclidean distance among all n-dimensional symbols

assigned to a set of parallel branches. This can be done using a block code with 2 p

n-dimensional symbols. For a trellis code to be geometrically uniform even among its

parallel branches, the set of block codewords must be geometrically uniform, that is,

the set of distances from any codeword to all the others must be the same. This can be

obtained by positioning the points uniformly on an n-dimensional sphere. However,

such a strong condition limits the number of parallel branches, and thus the rate of

the code. A weaker condition is to simply require that the minimum distance between

any codeword and all the others is the same. This allows us to construct the block

code by choosing the codewords from a" uniform n-dimensional set of points within

some boundary. This type of uniform set of points is called "geometrically uniform up

to the boundary effects" by Forney [15]. Thus, there are two types of geometrically

uniform sets of points:

• Perfectly geometrically uniform (PGU) set (which can be part of an

infinite geometrically uniform set), see Figure 5.2 (a).

Geometrically uniform up to boundary effects (BEGU) set (part of an

infinite geometrically uniform set), see Figure 5.2 (b).

If p is less than or equal to n, a p dimensional hyperrectangle can always be

constructed, thus yielding a perfectly geometrically uniform set of points. If p > n,

the set of points is either BEGU or PGU on an n-dimensional sphere.

131

3 e • 4

le e2

(a)

e13 e14 e15 e16

e9 elO ell e12

e5 e6 e7 e8 :

el e2 e3 e4 -

(b)

Figure 5.2: (a) Perfectly geometrically uniform set of points in 2 dimensions, (b)

Geometrically uniform up to boundary effects set of points in 2 dimensions.

These two possible types of geometrically uniform parallel branch sets lead to

two types of geometrically uniform trellis codes. The first type consists of a set of

sequences for which the set of distances from any one sequence to all the others is the

same (a PGU trellis code). The second type (a BEGU trellis code) consists of a set of

sequences for which the minimum distance between any sequence and all the others

is the same, and if the number of parallel branches is infinite, thus yielding an entire

infinite geometrically uniform set of parallel branch points, the trellis code is PGU.

This second type of trellis code is also called GU with respect to the trellis paths of

length greater than 1.

For PGU trellis codes, a similar block code must be used on every set of parallel

branches in the trellis. Therefore, once 2P points have been assigned to one set of

parallel branches, all the other parallel branch PB sets in the trellis are determined

132

by selectinga representativepoint, and then choosingthe other points geometrically

with respectto the representativepoint in the samewav that the points wereselected

for the first set of parallel branches.For instance,for the PGU set in Figure 5.2 (a),

supposethere are 2 parallel branches. Then, if (1,4) is selectedas the first PB set,

then for all other PB sets,only one branch must be chosenand the other onefollows,

that is, 1 implies 4, 4 implies 1, 2 implies 3, and 3 implies 2. Note that all PB sets

constructed this way are similar, that is, constructed by orthogonal transformation

from the first PB set.

For BEGU trellis codes,the other points must be selectedby respectinga fixed

minimum distancebetweenthem and the original set of points. For instance,for the

PGU set in Figure 5.2 (b), supposethere are 4 parallel branches.Then, if (1,3,9,11)

is selectedasthe first PB set, then all other PB setsareobtained by translation from

the first PB set, that is, 2 implies (2,4A0,12), 5 implies (5,7,13,15),and 6 implies

(6,8,14,16).Due to the boundary effects, the distancebetweentwo PB setsis defined

by the minimum distance betweenany two points from eachPB set. This meansin

particular that for eachset of parallel branches,a different portion of the infinite GU

structure can be taken. For energypurpose, the PB setsare then formed by taking

the 2Ppoints with smallest energyin the infinite set.

5.2.2 Diverging branches from the same state

Leaving each state of the trellis are 2 _ sets of parallel branches diverging to different

states. They correspond to the orthogonal projection of all code sequences starting

133

from that state onto an n-dimensional space. From any state of the trellis, the sets

of symbols on diverging branches must therefore be geometrically similar. Given

one symbol on a parallel branch, the set of symbols on all other branches must be

geometrically constructed in a similar fashion. Therefore, there must exist a set of

diverging parallel branch (DPB) points that is PGU formed by selecting at least one

symbol from each diverging PB set. Figure 5.3 shows four sets of points (a), (b), (c),

and (d) constructed from the association of two PB sets.

In case (a), the PB set is PGU, thus, it is possible to construct a PGU set of

diverging parallel branches (DPB set) by rotating the PB set around its center, by

doing a symmetry around a hyperplane passing through the center, or by combining

these two operations. In this case, the DPB set consists of all points from both PB

sets. In case (b), the same PGU PB set is translated, thus, the PGU DPB set consists

of only one point of each PB set corresponding to the extremities of the translation

vector, such as (1,1') in the Figure. DPB sets constructed in both cases (a)and (b)

can be used in the trellis shown in Figure 5.4. In case (c), the PB set is only BEGU,

thus only translations are possible as shown in (c) of Figure 5.3 while maintaining the

geometric uniformity of the association of both sets. Therefore, the DPB set consists

also of one point from each PB set as in case (b). Finally, in case (d), the PGU PB

set has strictly more than 2" points, thus a translation does not lead to a GU set of

points. A rotation as in (a) would yield a small distance between points, thus making

the resulting trellis code "bad" in terms of minimum Euclidean free distance. Hence,

if p > n, the PB set must not be PGU but rather BEGU. This is due to the fact that

a PGU PB set with less than 2" points can also be seen as part of an infinite periodic

134

GU structure, whereasa PGU PB set with strictly more than 2" points cannot be

periodically translated to form a GU structure.

3 4-- 04 ' 03 '4 •

• 03 • •

40 4 3

• 2' 'PI' 02'

• • 21 • • •
1' 1 2

(a) (b)

5'

• •
5 6

1'

,e

1 2

6' 7' 8'
@ • • 7' _' 5'

• @ 7 _0 5 •

7 8 • _ • 4'
2' 3' 4' •

• • • 80 4

• . .-
3 4 10_ 02'• 3

2

(c) (d)

Figure 5.3: (a) PGU set of diverging PGU parallel branches, (b) BEGU set of diverg-

ing PGU parallel branches, (c) BEGU set of diverging BEGU parallel branches, (d)

Non GU translated sets of PGU parallel branches.

jf_
J

f
." j / ,

/

.J
J z"

.J
J

jr J _-

Figure 5.4: Two diverging branches with four parallel branches at a trellis state.

In that example, we only considered two diverging sets of parallel branches. More

generally, the set of translated points or rotated points must form a PGU set of points

135

such that from any point of the diverging parallel branches, the same set of points

can be geometrically selected. An example is shown in Figure 5.5 for 4 diverging

sets of 4 PGU parallel branches (a), 4 diverging sets of 2 PGU parallel branches (b),

and 4 diverging sets of 8 BEGU parallel branches (c). Therefore, although the entire

constellation may be only BEGU, it is necessary to construct PGU DPB sets.

A catastrophic trellis is a trellis for which there exists long unmerged paths sepa-

rated by a small distance. It is equivalent to the concept of catastrophic encoders for

binary codes, for which there exists long unmerged paths separated by no distance at

all, except on the first branches. Note that for binary encoders, it is possible to use

an equivalent minimal noncatastrophic encoder which yields a code with the same

distance but on finite length paths. For real number trellis codes, this is equivalent

to label the trellis differently, thus yielding the same code with small minimum free

Euclidean distance. To avoid catastrophic trellises or codes with very small distance,

it is necessary to have at least two different geometrically similar DPB sets, for oth-

erwise there would exist different paths having the same symbols on their branches.

The signal constellation must therefore be constructed by selecting at least two geo-

metrically similar PGU DPB sets, and then associating PB sets with each point of the

DPB sets such that the whole constellation is BEGU. However, to keep the geometric

uniformity, this second diverging branches set of point must be geometrically identical

to the first one, that is, be a translation, rotation (if keeping the BEGU structure)

or reflection of the first set. Note for example that Figure 5.5 (a) corresponds to the

situation found in the trellis shown in Figure 5.1, since (1,2, 3, 4) and (1", 2", 3", 4")

correspond to the first two PB sets. The reflection of the DPB set consisting of points

136

1 and 1"' constitutes the second DPB set (1',1") for which the associated PB sets are

(1",2", 3",4") and (1',2',3',4').

2 ._ -

3' 3- 4' 4"' •
• • • • 2"

4" • 0 2.
03 03" 04 •

o,,:o o
PGU _' AI_,,O ' O2 O2"

(a)

PGU -P" O
O 1'_

O1

(b)

-or O r'Os' Os"C

C_ O7 Or'O8 O8"@
-_ is' O s"Oe' OsC_

: O5 Os-O6 O6'G
_ 03' 03-04" O4-C

-_ • 3"0 4 • 4" ,-:

-';' ?l,/_lV 1,.!02 ' 02'_

i

(c)

Figure 5.5: (a) 4 diverging sets of 4 parallel branches, (b) 4 diverging sets of 2 parallel

branches, (c) 4 diverging sets of 8 parallel branches.

In conclusion, the signal constellation must therefore be constructed by selecting

at least two geometrically similar PGU DPB sets, and then associating PB sets with

each point of the DPB sets such that the whole constellation is BEGU. In order to

construct geometrically similar PGU DPB sets, we can select 2 "-k+p geometrically

uniform sets of 2 k-p points by (1) set-partitioning an n-dimensional hyperrectangle

137

into geometrically uniform sets of 2 k-p points if (,k - p) < n (see Figure 5.6 (a)), or

(2) translating a (k- p)-dimensional hyperrectangle if k-p = n (see Figure 5.6 (b)).

In case (2), the two DPB sets together do not form a PGU set, but rather a BEGU

set, and the associated PB points must be chosen to maintain the BEGU structure.

One way to obtain a PGU set in case (2) is to rotate one DPB set with respect to the

other, but this does not allow any flexibility in constructing sets of parallel branches.

In other words, all points in the constellation would have to be on an n-dimensional

sphere, which may lead to a poor minimum distance if the number of points is too

large. Thus, only codes with k = n can be constructed in this way (see Figure 5.6

(c)). In any case, if Ic > n, it is impossible to construct two PGU DPB sets from an

n-dimensional hyperrectangle, thus forcing us to use rotation, which leads to codes

with poor minimum distance since k > n. Therefore, no good geometrically uniform

code exists for _: > n. (See construction, algorithm in Figure 5.13.) Note that usual

trellis code constructions from Ungerboeck [3] or Wei [48] are never constructed on

trellis topologies with/c > n.

4 3 4 $

2 1 2

• _ • 0,' • _v,'O

2 C)PB sets 20PB sets

-L. , .4O _,0 _,O • L/2_0

2 1 2

• • • • 6 0

(a)

4 7 2 S

3 _ $, 1

O" O)

, .)
-- 4 ,

1 I 3 1

fo) PB set

2 C)P8 sets

_4 1 O",,

0, , O!

I O;t

(c)

Figure 5.6: Constructing geometrically similar PGU DPB sets:

]¢ = n case, (c) k = n case.

Ca) k < n case, (b)

138

5.2.3 Generating branches of the trellis

We have seen that every point of the signal set can be described as its position in

the PB set and its position in the two or more DPB sets. Therefore. any symbol of

the code can be described by the set of two indices (a,b), with 1 < a < l • 2k and

1 < b < '2p, where 2 < l < 2 n-_. Due to the geometric uniformity constraint, only the

first point of each diverging branches set needs to be specified, since the others are

geometrically determined. Using this technique, only certain branches of the trellis

must be specified, and the rest of the trellis can be completed using a geometric

construction. To each DPB point is associated the PB set consisting of the set of

2p points with lowest energy in an infinite BEGU set containing this DPB point.

Without loss of generality, the lowest branch of the trellis can always be assigned a

DPB point which serves as a reference point. Then, the set of diverging branches

can be specified by the symbols on brafiches numbered 2 p+j for 0 < j < k - p + 1,

since all the other branches can then be assigned geometrically. Similarly, once the

first set of diverging branches is specified, only the first branch of DPB sets starting

from states numbered 2 k for 0 _< k <_ m - 1 must be specified, since the other sets

can be constructed geometrically. Figure 5.7 shows for a T(3, 2, 2) topology all the

generating branches that must be specified in order to construct the entire trellis

code. We note indeed that the specification of branch 4 completely defines the set of

symbols on branches 5, 6, and 7. Similarly, once branches 0 to 7 have been assigned,

the specification of branch 8 completely defines branches 9 to 15, and finally, once

branches 0 to 15 have been assigned, branch 16 defines all branches from 17 to 31. For

139

each new generating branch, we can assign the set of other branches by maintaining

the same set of distances from the new generating branch as the set of distances

between points on lower branches and the branch 0 reference point.

-.-.-:-:-'.--2 - _ - e

1 _ _r.- __,

o

Figure 5.7: Generating branches of a geometrically uniform trellis code constructed

on a T(3, 2, 2).

The generating branches correspond to the branches usually assigned by the gener-

ator of a convolutional code based on a similar topology without the parallel branches.

In the example shown in Figure 5.7, these branches correspond indeed to the path

described by the information sequence (1,0,0) where the generator bits can be found

for a 4 state rate 1/n convolutional code. For topologies with/c > 1, the generating

paths correspond to all information sequences starting with a first k-tuple composed

of all zeros except in one position, and then as many zeros as needed to make the path

remerge to the all zero state (delay). For instance, Figure 5.8 shows the generating

branches of a T(2, 0, 3) topology. Note that the first sequence has delay 2, and the

second has delay 1 only, which correspond to a total of m = 3 delays. In general, the

140

numberof branchesto assignis therefore rn + k. This unifies the theory of convolu-

tional codes and trellis codes, since the search for the best trellis codes requires the

same complexity than for convolutional codes. However, the free Euclidean distance

does not only depend on the generator but also on the constellation. The next section

explains how the optimization of both constellations and generators is achieved.

Figure 5.8: Generating branches of a geometrically uniform trellis code constructed

on a T(2, 0, 3).

5.3 Optimization of the free distance

Although PB sets represent block codes in n dimensions, and points must therefore

be positioned in n-dimensional space in order to optimize the minimum distance

between them, the DPB sets must not necessary be positioned in order to optimize

the minimum distance between them. Specifically, diverging and remerging paths are

not all of the same length, thus creating sequences of different dimensionalities.

141

5.3.1 Constellation optimization

In a finite dimensional space, the sphere packing problem shows that increasing the

minimum distance between points usually increases the number of nearest neighbors

to each point, that is, the number of points separated by the same distance. For

trellis codes, this concept is the same if we consider the first remerged path which are

separated by a finite number of dimensions. Although the number of dimensions that

separate sequences in a trellis code varies, the distance between them can increase by

increasing the number of nearest neighbor, that is, be separating different sequences

by the same distance.

For example, for the 4 state rate 1/2 trellis code based on a T(1,0, 2) topology, the

first two diverging and remerging paths are of dimensionality 3 and 4. The optimal

convolutional code, which corresponds to a GU trellis code constructed on a squared

PGU DPB set, has minimum free squared Euclidean distance 10. However, the first

remerging path is separated from the reference path by a distance 10, while the second

remerging path is separated by a distance 12. By changing the shape of the PGU

DPB set to a rectangle, for which the short side is assigned to some of the branches

of the dimension 4 sequence, and the long side is assigned to some of the branches

of the dimension 3 sequence, it is possible to equate the distances between these two

sequences and the reference sequence. Thus, both sequences are then separated by

a squared distance of 10.667, which becomes the minimum free squared Euclidean

distance of the modified code. Thus, one approach to optimizing the free distance

of geometrically uniform trellis codes is to construct n-dimensional hyperrectangles,

142

instead of hypercubes, and to equate the distance between paths of different lengths.

For the previous example, the shape of the rectangle can be optimized analytically.

For more complicated codes, the length of the rectangle sides can be optimized by an

optimization algorithm on n parameters, such as a simulated annealing [26].

(a) (b)

Figure 5.9: (a) Squared constellation of the 4 state rate 1/2 convolutional code, (b)

Rectangular constellation for the same code.

This approach can also be applied to equating the distance between the parallel

branches and the shortest diverging and.remerging paths. In particular, by expand-

ing the PGU DPB hyperrectangle, it is possible to also expand the PB sets, thus

increasing the minimum distance between parallel branches and decreasing the mini-

mum distance between diverging and remerging paths. For example, the 4 state rate

3/2 trellis code based on the T(3, 2, 2) topology constructed by Ungerboeck [3] using

a 16QAM constellation has a minimum distance between parallel branches of 1.6,

whereas the minimum distance between the shortest diverging path and the reference

path is 2.0. Thus, by expanding the PGU DPB square, it is possible to make both

of these distances equal to 1.66, which becomes the minimum free squared Euclidean

distance of the modified code (see Figure 5.10 (a)).

Note that this topology without parallel branches is the same as in the previous

143

example for the rate 1/2 code. Therefore, by going to a rectangular PGU DPB set,

it is possibleto equatethe distancesbetweenthe first remergingpathsof dimensions

3 and 4. For the squarePGU DPB set, the distancesare 1.66for the first path and

2.02 for the secondpath. However, for the rectangular PGU DPB set, the distance

betweenboth pathsand the referencepath is 1.68 (see Figure 5.10 (b)), which is the

best minimum distance achievable with this topology.

Expansion
of associated

PB sets
-I=,a •

2 DB sets

• 0' •

, • •

Larger • • • PGU
PGU Rectangle

square

2 DB sets

• • ',, • •

• • . O, •

o; o

• • • •

(a) (b)

Figure 5.10: (a) Optimized squared PGU DPB set, (b) Optimized rectangular PGU

DPB set.

Finally, it is possible to rotate PB sets if they are PGU in order to construct

DPB sets. This can be advantageous as opposed to translating sets, since it requires

less energy, and therefore points can be positioned further apart, thus yielding a

greater minimum distance. For example, the 4 state, rate 2/2 trellis code based on

the T(2, 1,2) topology constructed by Ungerboeck [3] using an 8AMPM (translated

DPB sets) constellation has minimum free squared Euclidean distance 3.2. For that

code, the PB set is a PGU segment of 2 points, and the first DPB set is constructed

by rotating this segment by a'/2 radians, thus yielding another PGU 4 points square

144

structure. The secondDPB set is then obtained by translating the first set (See

Figure 5.11 (a)). This translation canbe assmall aspossible,and canasymptotically

make the distancego to 4.0 asthe translation magnitude decreases.However, if the

two diverging branchessets mergeinto one (SeeFigure 5.11 (b)), the code becomes

catastrophic. Therefore, another way of obtaining such a distance is to rotate the

first DPB set to obtain the second one (See Figure 5.11 (c)), which also yields a code

with Euclidean distance 4.0 while not being catastrophic. The angle of rotation does

not change the code distance but the second set must be as distant as possible from

the first set in order to make it as different as possible from a catastrophic code, thus

yielding the 8PSK PGU constellation.

Merged DPB sets

Translation to
second DPB set

=

DPBset

/

Rotated DPB sets

1̧ •
ile e_,i

a

i • //

(a) (b) (c)

Figure 5.11: (a) 8AMPM constellation, (b) Merged 8AMPM constellation, (c) 8PSK

constellation.

5.3.2 Generator optimization

At this point, we have only studied necessary conditions on the constellation for

the trellis code to be geometrically uniform, and we have exhibited the generating

145

branches of a geometrically uniform trellis code. In this section, we study whether

these conditions are also sufficient for the trellis code to be geometrically uniform,

and it appears that not all possible generators lead to geometrically uniform codes

when the constellation is only BEGU. For PGU constellations such as n-dimensional

hyperrectangles or n-dimensional PSK, we can indeed select any PGU PB set, and at

least two PGU similar DPB sets. However, for BEGU constellations, other restrictions

have to be applied on the generating branches to obtain a geometric uniform trellis

code.

• The first two states contain two different PGU DPB sets.

The last remerging branches of the _: generating paths all merge to the

bottom state, and must therefore all belong to the first PGU DPB set.

Taking into account these extra rule_, the geometric generator matrix of a trellis

code can be written as the generator matrix of a convolutional code, by listing in

the]¢ rows of the matrix all the DPB points situated on each k generating branches.

Therefore, the matrix associated to a rate kin code constructed on a T(k,p,m)

topology can be written as

146

al 4 ... +'

a21 a_ ... a_ +I

• •

2 .. a/d+la_ a i .

a_+l 2 12d+lai+ 1 •..

:

1 2 d
a_ a_ ... a_

(5.2)

where the delay d = F-_] and the number of branches with delay d+l is i = rn+_:-d_:.

For example, the generator matrix of the best 4 state rate 3/2 trellis code based

on a T(3, 2, 2) topology is given by

G= [43. 41 (5.3)

and corresponds to the trellis and constellation shown in Figure 5.12.

This matrix format differs slightly from the generator matrix of a convolutional

code, since the n dimensions are regrouped into one integer index between 1 and

2'_. Therefore, the matrix really corresponds to one column of a convolutional code

generator regrouping the n dimensions for each delay. For example, the convolu-

tional code matrix] 111 101 100] corresponds to the trellis code generating ma-

I. l

trix[8 4 6].Hence, thesearchforthebestgeneratorrequiresthesamecombina-

torics as a convolutional code generator search and the free distance can be computed

by using the Bahl and Larsen's algorithm to compute the free distance [43], since the

code is geometrically uniform and therefore exhibits the same distance spectrum from

147

i3.4)

!3,3)
(3,2)

(aAII

(2,4)

(2,3) • (2.4)

(2.2) (2,3) • ' i"

(2,1) (2.2)/ ". i,i','"
12,1)

/ x,',.,_,_ i-". _ (1.3)

[4,3) f (3.21 _l_ (4.4) '_,
(,,2) / !:.3! <\ 5-
,. ,,, . / to, U. - (,L2)_ \ ,--_

If,4) •
(1.3)

(1.2)
{1.I)

x x x x

(3,3) (4,3) (3.4) (4,4)

X X X X

(1.3) (2,3) (1.4) (2,4)

X X X X
(3,1) (4,1) (3,2) (4,2)

x x x x

(1,1) (2,1) (1,2) (2,2)

Figure 5.12: Trellis and constellation of the best 4 state rate 3/2 trellis code.

the all zero path than from any other path. However, if the constellation is BEGU

only, the distance between two points from two different BEGU or PGU PB sets must

be calculated by taking the minimum distance between the two sets as mentioned in

Section 5.2.1.

5.4 Search for the best geometrically uniform code

Given all these rules to optimize constellation and generator, an algorithm to con-

struct optimal geometrically uniform codes must include an iterative procedure to

find the best constellation and generator on this constellation. The diagram of the

search algorithm for finding the best trellis code for a given rate and topology is

shown in Figure 5.13.

The idea of the algorithm is to base the constellation on the largest hyperrectangle

that can be built in this dimension. The first test checks whether it is possible

148

Start

T

Create an n-dimensional

hyperrectangle with

i=to 1" side ratio r i

(2_ i =;n)

T

k=n

v No

Yes k < n

T V NO

Sel-pal'til_n inlo 2 n_ Translate the

PGU DPB sets hyperrectangle to

of 2R points each create two PGU
DPB sets

For each point o! the DPB

sets, construct a similar

I n-dimensional lattice with
i one ol the points chosen

as a DPBpoint, and select

the other 2P'-1 points with least

energy to create the
associated PB set.

Yes

T
Select PB sets

from first DPB set

and rotate to form

second DPB set

Search for one generator which gives

optimal free distance for this constellation.

Compute the free distance d.

T
Do a simmulated annealing on

the parameters r_, on the translation

vector (if k = n),

and on the PB lattice shape.

Compute the new free distance d'./.

rYes

Stop i

No

Figure 5.13: Search algorithm flow chart.

149

to construct the entire constellation on an n-dimensional sphere. For instancerate

2/2 codes can be constructed on PSK constellations (k - n) (See Figure 5.6 (c)).

The second test checks whether the DPB sets can be constructed by selecting 2 '_-k

similar _:-dimensional hyperrectangles, or if it is necessary to translate the first DPB

set constructed on an n-dimensional hyperrectangle. For instance, if k < n and

p = 0 as for a convolutional code, we can always construct 2 "-k similar k-dimensional

hypersquares within the n-dimensional hypersquare, by taking for instance the two

diagonals of a square if n = 2 (See Figure 5.6 (a)). On the other hand, if]¢ = n

such as for the 3/2 trellis code based on T(3, 1, 3), it is necessary to translate the first

square to obtain the two DPB sets, thus yielding a 16 QPSK-type constellation as

shown in Figure 5.6 (b). Note that in this case, the PB lattices have to be constructed

in order to maintain the BEGU structure started with the translated DPB sets. See

Section 5.6 for more details.

Although the same constellation is used for all Ungerboeck's codes of the same

rate, they correspond in fact to a different construction when p varies. For example,

the rate 3/2 code with m = 2 is constructed with p = 2, thus leading to k < n. For

m = 3, p = 1, hence, k = n. Therefore, the 16QAM constellation is decomposed into

different DPB sets as shown in Figure 5.14. In any case, p = 0 would yield k > n,

which cannot lead to a geometrically uniform code.

150

4 3 4 3

2 1 2

• • 0,_ _ •

4 3 4 _ _3

1 2 I 2

--DPB sets-

4 _ 2 5

• _0 • •
7

8 -- 6 1

3

2 _' 5 7

• • O) •

1 8 3
6

(a) (b)

Figure 5.14: (a) 4 state rate 3/2 code (p = 2), (b) 8 state rate 3/2 code (p = 1).

5.5 Analysis of some existing geometrically uni-

form codes

To illustrate the theory explained in this dissertation, it is interesting to study some

codes which are geometrically uniform even though they are constructed with a non-

linear convolutional code, as well as some non geometrically uniform codes.

5.5.1 Geometric uniformity of Wei's 8 state, rate 4/2 trellis

code

In this section, we study the example of Wei's eight state trellis code [53] specified

in the CCITT V.32 standard, which is based on a nonlinear convolutional code,

but happens to be geometrically uniform. With our geometric construction, the

generating branches a(xtomatically lead to the same code. Figure 5.15 shows the

trellis diagram and the constellation associated to the trellis. On the constellation we

identify the two PGU DPB sets, as well as their corresponding PB sets.

First, note that some states of the trellis as it was represented in [53] have been

switched to obtain our usual representation of the T(4, 2, 3) topology. Following the

151

g e

f

a

PGU DPB sets b g • • •

• cO O b g e

• , ! d

ao 'aOp ao! itO a O
• .i ! g_ • g_

cO bO cOJ: • cO

h i tO hi b •
f e

dO aO dO

• e• b c
g

a d

Figure 5.15:. Wei's eight state rate 4/2 trellis code on T(4, 2, 3).

152

search algorithm flow chart, it is possible to identify this code as being geometrically

uniform. Indeed, since k ¢ n and k = n, we must translate two squares which

correspond to the two PGU DPB sets. The PB sets associated to each point of the

DPB sets are such that the energy is minimized. The generator matrix of the code

can be written

dha

a = (5.4)

b d

Note that the geometric position of [a, d, b, c] is equivalent to [a, c, b, d], hence, other

equivalent geometrically uniform codes could be constructed from the same generator

matrix. However, if [a, d, b, c] was a rectangle instead of a square, they would not be

equivalent anymore, and Wei's code would fail to be geometrically uniform, since the

generator matrix above would produce interversion of some labels as opposed to Wei's

code. This example shows that it is not always possible to encode a geometrically

uniform code by using a linear convolutional code followed by a mapper, since not

all orthogonal transformations from one DPB set to another can be expressed by a

linear transformation in the binary field.

5.5.2 Non geometric uniformity of Wei's 64 state 5/4 code

It has been noted that all Wei's 4D trellis codes with strictly less than 32 states are

geometrically uniform, whereas no 64 state code has been found geometrically uniform

yet. This can be explained by the fact that all 4D codes with less than 32 states have

been constructed on topologies with _: = 3 < n = 4, whereas 64 state codes have

been constructed using a topology with k = 5- 1 = n = 4. For this code, Wei used a

153

decomposed 4D constellation into 64 subsets obtained by selecting 8 subsets in each

composing 2D constellation. Thus, 3 bits select a point in the first 2D constellation

and 3 bits select a point in the other 2D constellation. In order to understand the

problem better, it is advantageous to compare it to the construction of a rate 3/2

code on the Cartesian product of two 1D constellation as shown in Figure 5.16. We

then need 16 subsets obtained by selecting 4 subsets in each 1D constellation. Thus, 2

bits select a point in the first dimension and 2 bits in the other dimension. However,

in order to construct two translated squares as shown in Figure 5.16, at least one

bit must be different in each dimension to represent each DPB set. However, since

there are only three bits on each branch of the underlying convolutional code, the

fourth bit being added for a parallel branch, it is impossible to obtain the DPB

sets as shown in Figure 5.16. Therefore, the separate labeling of each constituent

subdimensional constellation does not allow one to construct a geometrically uniform

code when fc = n. One way of obtaining a geometrically uniform code would then be

to either use a rate 2/4 underlying convolutional code, or authorize a direct labeling

of the whole 4D constellation. However, with the geometric construction described

previously, it is possible to construct a 64 state rate 5/4 trellis code with p = 1 which

is geometrically uniform.

5.6 Construction of the best geometrically uni-

form codes for a trellis topology

Figure 5.13 shows the algorithm for constructing geometrically uniform trellis codes.

In the preceding section, this algorithm was used to study the geometric uniformity

154

Cd

B¢ I_

Ab Ad Abl

Da D¢ Oa_
Cd Cb_

• • O_'
Gb

'Be I_l

Ad

Dc

Figure 5.16: Cartesian product of two 1D constellations.

of some previously constructed trellis codes. In this section, we describe the imple-

mentation of the algorithm, and give a table of codes reaching a greater free distance

than previously constructed trellis codes.

5.6.1 Implementation of the algorithm

The algorithm is divided into three main algorithms for constructing the signal con-

stellation depending on the parameters k, p and n, a generator search, and a simulated

annealing on the parameters specifying the constellation. First, we must construct

an n-dimensional hyperrectangle with i th to first side ratio ri for 2 < i < n. These

n - 1 parameters equal 1 for a hypercube. The construction is executed by layers.

The first layer consists-of two points separated by a distance 1, then by induction, the

i + 1th layer is constructed by copying the previous layers in a new dimension distant

by ri+_ from the previous one. In other words, the coordinates X of any point of the

rectangle can be put in the form

x = R. B, (5.5)

155

where R = (1,r2, r_) and B = (bl,b_, b,_)' with b_ E {0, 1}, 1 < i < n. Figure

5.17 shows a 3-dimensional hyperrectangle. An n-dimensional parameter d indicating

the displacement of the center of the rectangle (not necessarily the zero energy point)

is introduced for the simulated annealing.

A 7 A8
w v

5 6
0--- 4} 4

3/¸ 4 "

,, _. ¢
r2;

1 2

Figure 5.17: 3-dimensional hyperrectangle.

Geometrically uniform set partitioning of the main hyperrectangle

We now present the constructing algorithm associated to cases for which k _ n

and k < n. The idea is to set-partition the hyperrectangle constructed previously

into 2 "-_ GU sets of 2k points. This can be done by selecting one GU set of 2_'

points and then select the other sets by taking the remaining points and associate a

similar GU set from each one of them. This is possible since the entire n-dimensional

hyperrectangle is GU._In order to select the first GU set of 2_ points, we can select

a set of k generating points, as for the construction of a linear (n,]¢) block code

for which the]c independent n-dimensional rows of the generator matrix define the

entire code. Geometrically, the construction can be done by executing the following

algorithm.

156

• Step 1: d,,u,_ = 0. Select one point from the n-dimensional hyperrect-

angle as a reference, i = 1.

• Step 2: Select a new point from the n-dimensional hyperrectangle.

i = i + 1. Consider this point as a generating point.

• Step 3: If i >__3, from this new point, select the (i - 2) points geomet-

rically situated at the same distance than that between all previously

constructed points (2 to i - 1) and the first point, i = i + (i - 2).

• Step 4: If i < 2k, go back to step 2.

• Step 5: Compute the minimum distance d_i n between all 2k points. If

dtmin > drain, store this set of generating points, and dmln I---- drain.

• Step 6: Go back to step 2, until all possible generating points have been

tried.

Step 7: The best GU set of point is obtained by doing the (step 2, step

3) construction with the generating points stored in step 5.

Example 5.6.1 We want to construct the best GU set of 4 points within the 3-

dimensional hyperrectangle shown in Figure 5.I7. We select point 1 as a reference at

step I. Suppose we select point _ at step _. Since i = 2 at step 3, we go back to step

2, and select for ezample point 3. Then, at step 3, the point situated from point 3

at the same distance than that between point i and 2 is _. The minimum distance is

then d,_in = min{1, r2}. We store the generating points 2 and 3. After going through

157

all possible generating points, we select _ and 6 as generating points, which lead to

the set of points with best minimum distance {1,4,6, 7}. Assuming r2 < 1 < r3 in

this example, we have a GU set of 4 points with d,_i,_ = V/1 + r].

Note that this algorithm is the geometric equivalent of an algebraic search for the

best linear block code over the n-dimensional hypercube {0, 1} '_. The k rows of the

generator matrix of a linear block codes correspond to the generating points of the

algorithm. The step by step construction of the set of points is equivalent to avoiding

generator matrices with linearly dependent rows. Note also that this algorithm can

be directly implemented in the search of generating matrix for the trellis code defined

in section 5.3.2, since the first index of each row of the trellis code generating matrix

corresponds to the first DPB set.

Once the 2 '_-k DPB sets have been selected, it is necessary to assign the 2 p - 1 PB

points associated to each DPB point. This can be done by constructing a sufficiently

large section of a lattice constructed layers by layers as in the hyperrectangle con-

struction. In theory, the entire lattice must be constructed, but since we only need

to select points with lowest energy, it is only necessary to construct approximately

2 p+"+I points of the lattice. The n-dimensional lattice is defined by the n generating

vectors of the lattice. By simplicity we limit our search to cubic lattices although as p

and n increase, it becomes better to use lattices with better packing density. The size

of the generating cube of the lattice must be larger than the minimum size among

the n-dimensional DPB hyperrectangle sides. This introduces another parameter r

indicating the ratio of the side of the lattice generating cube to the first side of the

158

n-dimensional DPB hyperrectangle. Therefore, we impose

r>ri 2<i<n (5.6)
r>l

Once the points of the lattice with lowest energy have been assigned to each point of

the DPB sets, we can start the generator search described in section 5.6.1. Note that

the minimum distance between lattices associated to DPB points corresponds to the

distance that we must use when computing the distance between these DPB points

later on in the free distance computation. We now look at the case where k -¢ n and

Translation of the hyperrectangle

In the case where k = n, the entire hyperrectangle constitutes the first DPB set. We

saw in Section 5.2.2 that is is necessary to have at least two distinct DPB sets on the

first two states in order for the code to have sufficiently large distance or to avoid

catastrophic labeling of the trellis. In this case, it is then necessary to translate the

hyperrectangle. Yet, the two translated hyperrectangles already constitute a BEGU

set. Therefore, the associated PB lattices must be constructed with the same basis

than the DPB hyperrectangle as shown in Figure 5.18 (a) for the 2 dimensional case.

Figure 5.18 (b) shows indeed an example where the PB lattices are square instead of

rectangular as the DPB hyperrectangle. The PB lattice is highlighted for one of the

DPB points. Hence, for this case, the resultant constellation is not GU. However, in

Figure 5.18 (c), even though the PB lattices have the same shape than in Figure 5.18

(b), the translation of the second DPB is such that the constellation is GU.

159

Dueto this extra constraint, in order for the PB lattices to besquare,it isnecessary

that the DPB setsarehypercubesinsteadof hyperrectangles,or that thetranslation of

the hyperrectangleleadsto a GU constellation. This introducesa newn-dimensional

parameter t corresponding to the vector of translation of the hyperrectangle. By

simplicity, we consider, however, that the PB lattices are square, thus avoiding the

non geometrically uniform case shown in Figure 5.18 (b).

• • • o • •

• • • • o •

• 0"- tl0 •

• 0"- lib _ • . . , -'." •• • t • •

• • • • • eo ° 0o • •

• oO • °o ° •

(a) (b)

• • e'- -- -- --i-- --0 • •
q

- . 6 -.-_ • o

w • m • o

Figure 5.18: (a) Transl_ated DPB sets with their associated rectangular PB sets (GU

case), (b) Translated DPB sets with their associated square PB sets (non GU case),

(c) Translated DPB sets with their associated square PB sets (GU case).

We now consider the case k = n for which it is possible to situate all DPB sets

and PB sets on an n-dimensional sphere (PSK) in order to use as little energy as

160

possible (see Section 5.3.1).

n-dimensional PSK constellations

For the case where k = n, we need to design a GU constellation on an n-dimensional

sphere. For this purpose, we use the n-dimensional hyperrectangle and rotate it in

order to obtain 2k+x points on the sphere. This is to be sure that the partitioning of

the 2 k+x points into two sets of 2 _ points leads to two similar GU sets (n-dimensional

hyperrectangle). Any matrix with determinant 1 is a rotation matrix. However, since

we want to use a simulated annealing on the minimum number of parameters, we

have to find the minimum number of rotation angles in n dimensions to rotate an

object to any other possible position. The basic 2-dimensional rotation matrix R in

a plan is given by

cos 0 sin 0

R = • (5.7)

- sin0 cos 0

In 3 dimensions, there are three axis around which an object can be rotated. The

three possible matrices are therefore given by

R_

1 0 0

0 cos0_ sin0_

0 -sin0_ cos0_

RZ "--

Ry

cos 0z sin 0z

- sin 0z cos 0z

0 0

cos0 v 0 sin0y

0 1 0

-sin0 u 0 cos0 9

0

0

1

(5.8)

161

A 3-dimensional object can then be rotated by successively applying each rotation

matrix to each point of the object. More generally, in n dimensions there are n(n -

1)/2 independent rotation matrices obtained by positioning n -2 one in all possible

positions of an n-dimensional matrix and the basic 2 dimensional rotation matrix in

the other 2 positions. This introduces n(n- 1)/2 parameters 0; for 1 < i < n(n- 1)/2.

However, although rotating a rectangle in two dimensions leads to a geometrically

uniform constellations for any rotation angle, this is not the case for higher dimen-

sional cases. In particular, for the 3 dimensional case, a cube has 8 vertices and only

6 faces. Therefore, it is impossible to rotate the cube in order to bring a vertex of

the "new" cube at the center of a face of the "old" cube. It is possible to rotate the

cube around one axis only, yielding a GU set as shown in Figure 5.19 and discovered

previously be Slepian [50], but this does not set points uniformly on the sphere as it

would be needed to get the largest possible distance between points.

•• •
, : j

iI '/ F /, i ' P _ x_' /'l _1 z/

1 ,

i" ," i /z

'e- --4"

Figure 5.19:3 dimensional cube rotated around one axis.

For the purpose of constructing codes with large distance and gain distance by

constructing higher dimensional constellations, we allow all possible rotations but

consider the minimum distance between the two rotated hyperrectangles as the min-

162

imum distance between any points of the first hyperrectangle and the rotated one.

This still allows us to compute the free distance by only computing the Euclidean

distance between the bottom path and the others, as for a geometrically uniform

code. By letting the simulated annealing converge to the optimal parameters, we

can hope that the resulting constellation is also geometrically uniform. We now de-

scribe the next step of the algorithm, common to all cases of k, p, and n, that is, the

generator search.

Generator search

The generator search consists in finding the generating matrix described in Section

5.3.2 which yields the trellis code with the largest free distance. Once two DPB sets

have been constructed by following the algorithm described in Section 5.6.1 if _: < n,

by translating the first hyperrectangle if _: = n as described in Section 5.6.1, or by

rotating it if k = n as described in Section 5.6.1, the branches leaving the two first

states must be assigned with the DPB sets and their associated PB points. For the

other states, a search through all possible DPB sets has to be done, which is similar

to the search for convolutional code generators.

Note that for codes with rates lower than l, it is possible to use the generator

of optimal free distance convolutional codes, and try to modify the hypercube into

a hyperrectangle by doing a simulated annealing on the rectangle side ratios ri, for

2 _< i _< n. The conversion from the usual convolutional code generator matrix

notation to the notation described in Section 5.3.2 can be done by using the composite

generator of convolutional codes as described in [9]. This is done by interleaving the

163

bits associated to each generator.

Example 5.6.2 Let is convert the generator matrix of a 4 state, rate 2/3 convolu-

tional code with squared free Euclidean distance _ into the notation used in Section

5.3.2. The generator matrix is given by

ii Ol ii
G=

Ol I0 I0

By taking the composite form of this matrix, we obtain

(5.9)

ecoTnp

101 111

011 100

which correspond to the points of the 3-dimensional cube

(5.10)

6 8

GGU =

" 4 5

(5.11)

However, note that the optimal free distance convolutional codes do not always

lead to the best geometrically uniform codes. In particular, in Example 5.6.2, the

generating matrix does not lead to an optimal free distance GU real number trellis

code. There is indeed a code with squared free Euclidean distance of 5 and generating

matrix

4 2

Gau = (5.12)

7 8

Also, the best generator matrix can be the same for a given k and n. Therefore,

it is possible to obtain the same generator matrix for different k, which is similar

164

to Ungerboeck'sresults, where the same parity check matrix is used for different

constellation expansions.

Simulated annealing on the constellation parameters

Constellation optimizations have been performed in the past [55, 56], but usually

depending on only one parameter, in particular, the angle between the two DPB sets

of two points in a 2-dimensional square, or between the two DPB sets on an 8PSK

constellation. This corresponds to only one of the parameters that is adjustable on

GU constellations as seen in previous sections, especially as the number of dimen-

sions increases. In [56], the multidimensional constellations are indeed constructed

with the Cartesian product of 2-dimensional constellations, adjustable with only one

parameter.

However, the problem of optimizationof a function depending on many parameters

is not as simple as the optimization of a function of one parameter where simple

analysis leads to the result. Therefore, one way of optimizing many parameters at

the same time is to use a simulated annealing [26] on the parameters ri, r, t and Oi.

Depending on k, p, and n, only certain parameters need to be adjusted as seen in the

previous sections. In the next section, we indicate the results that we obtained from

our implementation of the algorithm.

5.6.2 Results

The search for codes has been performed for various rates lower and greater than 1.

Results are given in Tables 5.1, 5.2, 5.3, 5.6.2, 5.6.2, 5.6.2. Note that n-dimensional

165

codes are considered to be transmitted using an n-dimensional constellation with

average energy 1. Therefore, the squared free Euclidean distance is normalized per

dimension. In particular, to compare a rate 1/2 convolutional code free Hamming

distance with a rate 1/2 GU real number trellis code squared free Euclidean distance,

it is necessary to multiply the Hamming distance by 4 to obtain the squared free

Euclidean distance of the code transmitted on a 1 dimensional BPSK, and divide it

by n = 2 since it is transmitted with a 2-dimensional constellation. Therefore, the 2

state, rate 1/2 convolutional code with Hamming free distance 5, is equivalent to a

rate 1/2 QPSK trellis code with free squared Euclidean distance 5 × 4/2 = 10.

Similarly, it is possible to compare a 4-dimensional trellis code obtained from the

Cartesian product of two 2-dimensional constellations, such as Wei's codes [48] with

an n = 4 GU trellis code by dividing the squared free Euclidean distance of the

code constructed on the Cartesian product, since twice as much energy is needed

to transmit 4 dimensions on two separate 2-dimensional constellations than on one

4-dimensional constellation. Therefore, the approach of this dissertation does not con-

sider multi-dimensional trellis codes, but rather n-dimensional trellis codes, whatever

the transmission scheme is. In particular, a 4-dimensional GU code can be transmit-

ted using a multi 2D constellation, or a multi 1D constellation, as convolutional codes

were first transmitted. When reading the table, however, it is necessary to multiply

by the correct coefficient for comparison with existing codes.

The table only presents codes for which an improvement was noted as opposed to

previous constructions. In particular for rates lower than 1, the codes are compared

to optimal free distance binary convolutional codes [9]. For rates greater than 1 and

166

n = 2, the codes are compared to Ungerboeck's codes [3]. For n greater than 2, codes

are compared to Wei's multi-dimensional codes [48]. The asymptotic gain in dB by

using our codes instead of previously existing codes is given, as well as the asymptotic

gain vs using an uncoded constellation of same dimension at the same transmission

rate.

Depending on k, p, and n, only the concerned parameters described in the previous

sections are given. In particular, for _: < n and k _ n, ri are specified for 2 < i < n,

d and r are specified if p > 0, for _ = n, ri, d, and t are specified. Finally for k = n,

ri and 0i are specified. These parameters and the generator are sufficient to construct

the code.

Finally, note that some GU trellis codes can be considered asymptotically catas-

trophic as some optimized parameters make the constellation merge into less points

as noted in [55, 56]. This means that the free distance of the code tends to the value

given in the table, as the parameter tends to their indicated value. However, if the pa-

rameters take exactly that value, the trellis code becomes catastrophic, which means

that there is an infinite path which has lower Euclidean weight than the free distance.

This path for a slightly different value of the parameters gains some weight as the

number of symbols transmitted increases, thus avoiding the catastrophic property of

the encoder, assuming the decoder waits enough time to decode.

167

Comments on the results

All codes with k > 1 have been constructed for trellises up to 16 states (m = 4). Only

codes for which an improvement was noted when compared with existing codes are

shown in the table. For codes with k = 1, codes have been constructed for trellises up

to 2048 states (ra = 11), but only codes with improvement over previously existing

codes are shown in the table.

For rate 1 codes, where spherical constellations were used, note that the distance

per dimension of the rate 2/2 code is 8 (resp. 9.172) (see [3]) for the 4 state (resp. 8

state) code, whereas the distance per dimension of the rate 3/3 code is 8 (resp. 8.37)

(see Table 5.1 and 5.2). This shows that the distance per dimension decreases as n

increases, which is contrary to what usually happens with block codes. Note also that

for n = 2, no improvement was obtained by letting the rotation angle be different

from 7r/4 (8PSK). In particular, we did not find any 16 state code with _e, = 5.20

as found in [55].

For rates greater than 1, improvement was noted for trellises with T(1,p,m)

topologies as noted in Section 5.3.1 by letting the square become a rectangle and

by letting r be greater than 2min{1,ri}, that is by having PB lattices larger than

twice the DPB rectangle minimum side length. Also, as k increases, it becomes

advantageous to select the points with lowest energy, as already mentioned by Wei

[53].

For rates lower than 1, note that less improvement over binary codes is usually

noted as n increases, since the number of points 2n to select from becomes larger,

168

even for hypercubes (binary set). Note however that the distance per dimension can

usually be made as large for n = 2 than for greater n by using real number codes

instead of binary codes. For instance, the 4 state, rate 1/2 code only has distance

10 on the binary field, whereas is has distance 10.67 over the real field (as seen in

Section 5.3.1), which is equal to the distance per dimension of the rate 1/3 binary

convolutional code.

In average, the gain obtained by this new construction between .1 and .9 dB

for non asymptotically catastrophic codes, and up to 1.25 dB for the asymptotically

catastrophic 2 state rate 1/2 code. This gain is important especially for high rates

codes, for which the coding gain versus using an uncoded constellation is not very

high.

5.7 Conclusion

A new construction of geometrically uniform trellis codes based on geometric con-

siderations has been presented. The constellation is geometrically constructed by

following a decomposition of the trellis topology. This constructive process of the

constellation allows us to identify generating branches on the trellis, which are suffi-

cient to construct the entire trellis code. An algorithm was presented to optimize the

free distance of a geometrically uniform trellis code on a given trellis topology. This

algorithm also allows us to check the geometric uniformity of previously constructed

codes such as some of Wei's multidimensional codes.

The construction of constellations using hyperrectangles instead of hypercubes was

169

provento improvethe freedistancein manycases.This theory completelyunifiesthe

designof convolutional codesand trellis codesusinggeometricconsiderations,which

can leadto the construction of codesfor variousrates and topologies.

170

Tables of codes

rrl

2

3

4

2

3

4

2

1

2

3

7

9

rate I

5/2

5/2

5/2

4/2

4/2

4/2

3/2

1/2

1/2

1/2

1/2

1/2

d2f r ee

(bin. codes)

d2_fr ee

(trellis codes)

Gain vs

uncoded (dB)

Gain vs

coded sym.

.392 5/6 (64QAM)(.381) 3.13 .123

.491 5/6 (64QAM)(.476) 4.11 .135

.595 5/6 (64QAM)(.571) 4.94 .178

.807 4/5 (32AMPM)(.762) 3.05 .249

1.0 4/5 (32AMPM)(.952) 3.97 .214

1.21 4/5 (32AMPM)(1.14) 4.80 .259

1.68 3/4 (16QAM)(1.6) 4.57 .212

8t 6 3.01 1.25

10.67 10 4.26 .281

13.33 12 5.23 .456

21.33 20 7.27 .280

25.14 24 7.98 .202

Table 5.1: Two-dimensional real number trellis codes

171

77/

2

3

2

3

2

3

1

5

7

9

rate

4/3

4/3

3/3

3/3

2/3

2/3

1/3

1/3

1/3

1/3

1.17

1.77

2.67

2.79

5.00

6.40

st

5.33

6.67

18 17.33

22.61 21.33

27.29 26.67

(trellis codes)

Gain vs

uncoded (dB)

3.11

4.91

3.01

3.21

2.73

3.80

3.01

Gain vs

coded sym.

.969

.794

.789

- 6.53 .165

7.52 .253

8.33 .100

Table 5.2: Three-dimensional real number trellis codes

172

m

2

3

4

2

2

3

2

3

7

rate [

5/4

5/4

5/4

3/4

2/4

2/4

1/4

1/4

1/4

_ree

(real codes)

_ree

(trellis codes)

Gain vs

uncoded (dB)

Gain vs

coded sym.

.875 2.43 -

1.23 3.91 -

1.53 4.86 -

3.2 3 2.04 .280

5.33 5 4.26 .281

6.4 6 5.05 .280

10.67 10 4.26 .281

13.33 13 5.23 .109

22.85 22 7.56 .165

Table 5.3: Four-dimensional real number trellis codes

173

Tables of codes parameters

m

4

5/2 3

5/2 3

4/2 3

4/2 2

4/2 2

2 3/2 2

1 1/2 0

2 1/2 0

3 1/2 0

1/2

1/2 0

3,8,4 J

(4,3,4)

4,6,3

_, 3,4)

(4,3,4)

(4,2)

(4,2,4)

(4,4,2,4)

d

(.111,

.iii)

1.141 1.

2.415 .979

2.375 1.134

1.125 1.

1.5 .959

1.547 .774

°

.707

- .707

1.414

1.155

t Oi (rad)

(.213,

-.654)

(-.130,

-.432)

(.32, 0.)

Table 5.4: Two-dimensional constellation parameters

174

m tr telPGenor tor,
4/3 3 (6,7,8) - 1.41

3 4/3 2 - 2.36

2

7,7

3/3 2 (2, 4,2)

3 3/3 1

2 2/3 0

3 2/3 0

1

5

7

9

1/3

1/3

1/3

1/3

0 (6,8)

0 (8,2,4,6,7,8)

(8,4,2,8,
0

3,6,2,8)

(8,2,4,7,3,
0

4,6,7,6,8)

I
ri t [Oi (rad)

(.833,998) -

(1.184,1.)

(1.,1.) (0.,.337,.420)

(.954,1.099)

(.707,1.)

(1.,.707)

(0.,1.)

(.707,1.)

(.656,1.222)

(1.154,.613)

(.808,0.,1.57)

Table 5.5: Three-dimensional constellation parameters

175

Generator

(15,16,16)2 5/4 4

3 5/4 3

4 5/4 2

2 3/4 0

2 2/4 0

3 2/4 0

2 1/4 0

(12, 11, 13 _

k 13, 16)

12,10

6,16

10,14,11]

I

x 15,16)

f
10,14

(
15, 11,13 !

_, 4,16)

(16, 15, 16)

3 1/4 0 (16,2,16,16)

- 1.72

1.03

- 2.05

ri

(.804,1.50,1.18)

(.51,1.,1.)

(1.04,1.05,.95)

(1.,.817,1.)

(.707,1.414,707)

(1.05,.850,.876)

(.933,1.115,.204)

.381,1.588,2.019)

(1.414,1.224,577)

It Oi (rad)

Table 5.6: Four-dimensional constellation parameters

CHAPTER 6

CONCLUSION

This dissertation has shown that the construction of codes over the real numbers can

be advantageous over binary numbers. First, block codes were presented as sets of

codewords in finite dimensional space and trellis codes as set of sequences in infinite

dimensional space. Although block codes in the binary field can be constructed

and decoded using algebraic techniques, convolutional codes benefit from the binary

field by imposing linearity between the set of code sequences, which simplifies the

construction and the analysis of the code performance. For convolutional codes,

however, algebraic techniques have not so far lead to the construction of good codes,

and the best decoding techniques involve algorithms which do not make use of the

binary algebraic structure.

In Chapter 2, we showed that it is possible to construct good binary convolutional

codes with a new technique based more on the statistical properties of the code

generators, instead of its algebraic properties. This led to the construction of new

codes with much larger constraint length than previously constructed codes. It was

176

177

shown that good trellis codes usually exhibit a constant row distanceequal to the

minimum freedistanceof the code. This important conceptis evenmoreusefulin the

construction of real number trellis codes. In Chapter 3, we provedthat the bounds

on the minimum freedistanceof codesover the real field are larger than the bounds

on the minimum free distance of binary codesof the samerate, especially for rates

greater than 1. In addition, the decodingalgorithms availablefor trellis codesarenot

restricted to binary numbers,becausethey canperform soft decisiondecodingwhich

make useof the real output from the channel. Therefore,it seemedadvantageousto

construct trellis codesover the real field as opposedto the binary field.

However,severaldifficulties are encounteredwhen constructing trellis codesover

the realfield. Onesuchdifficulty is the lackof linearity betweencodesequences,which

make the computation of the minimum free distancedifficult. Another difficulty is

that it is not possibleto do a combinatorial searchto find the best codegenerators.

This last difficulty wasavoidedin Chapter 4 by developinga searchalgorithm adapted

to the densityof the real field, that is, a simulatedannealingon the codeparameters

[26]. The simulatedannealingallowed us to construct somecodesover the real field

with a better minimum freedistance than binary convolutional codeswith the same

trellis topology. However,the searcheshad to be executedover a larger number of

parametersthan binary convolutional codes,and the computation of the minimum

free distancewasmuchmore difficult due to the lack of linearity. In Chapter 5, we

used the concept of geometric uniformity to extend the concept of linearity in the

binary field to the real field. The free distancecan be computedfrom one sequence

only, and the numberof parametersto select canbe reducedto the samenumber of

178

parameters than for a binary convolutional code. This allowed us to construct real

number trellis codes of all rates and relatively large constraint length with optimized

free distance.

In the next section, we present the concepts seen in this dissertation in a more

geometric way, which explains the construction of real and binary block and trellis

codes in terms of sphere packing arguments.

6.1 Unification of the theory for constructing bi-

nary and real number codes

As it was noted in Chapter 3, constructing codes is equivalent to finding the best

sphere packing in a n-dimensional space. If we are constructing a block code, the

dimension n is fixed. For a trellis code, the number of dimensions separating two

code sequences is variable. However, some concepts can be studied and compared for

both types of codes.

6.1.1 Low rate codes

When the number of codewords constructed in n dimensions is less than 2 _, then

the rate is lower than l, and it is possible to obtain the best minimum distance by

placing all codewords on a sphere of energy 1. In particular, binary code words or

sequences are constructed on the n dimensional hypercube contained in this sphere.

Although the best real number block code would have all codewords positioned on

the n dimensional sphere with equal distances between them (2 k polytope), good real

number block codes result from taking the best 2 k points of the binary n-dimensional

179

hypercube. Moreover, imposing linearity between the binary codewords helps in con-

structing and studying the code performance without limiting the distance achievable

for a block code of that rate.

Some gain can be obtained by using the best 2 k dimensional polytope as opposed

to the best set of 2k points in the n-dimensional hypercube. Thus, some gain is

expected by using real number codes as opposed to binary codes. An approach which

maintains linearity or group structure among code words, while slightly improving

the distance involves degenerating the n-dimensional hypercube into a hyperrectangle,

which is a geometrically uniform structure. Figure 6.1 shows the best polytope with 3

codewords on a 2-dimensional sphere, and the best set of 3 codewords taken from the

2-dimensional square. Note the difference between the minimum distances. However,

for 2 or 4 codewords, the best polytope is a hypercube and it does not change the

minimum distance to restrict our codewords to the vertices of the square.

For convolutional codes, the problem is slightly more difficult to perceive geo-

metrically, since code sequences are not all constructed over the same number of

dimensions. However, given a length l, it is possible to look only at all remerged

paths of that length through the trellis. The set of such paths constitutes a block

code with 2 kl-m codewords in an nl dimensional space. Yet, since the constituent

code words are not all separated by the same number of dimensions, they must be

positioned optimally within their sub-dimensional space, which can generally not pro-

duce a rate (kl - m)/nl block code as good as the best block code of the same rate.

However, using real numbers allows us to construct codewords in sub-dimensional hy-

perrectangles instead of hypercubes, and allows us to reach the optimal free distance

180

given by the tightest upper boundson the minimum distance of block codes.

Recall the case of the 4 state rate 1/2 convolutional code described in Chapters 4

and 5, for which the n x 4 = 8 dimensional code sequence is separated by a distance

12 from the all zero code sequence while the n x 3 = 6 dimensional code sequence

is separated by a distance 10 from the all zero code sequence. By constructing the

code sequences over a hyperrectangle instead of a hypercube, both distances become

equal, and the code has a better minimum free distance.

I

A A

w I w
. I

!

I
I

k

!
i
!

Figure 6.1: 2-dimensional hypercube and polytope with 3 codewords.

6.1.2 High rate codes

When the number of codewords constructed in n dimensions is greater than 2 '_, then

the rate is greater than 1, and the best polytope with 2k points on the same n dimen-

sional sphere does not optimize the minimum distance between points, which is the

case for low rate codes. As an example, compare the minimum distance between 8

codewords constructed on a circle and the optimal positioning in Figure 6.2. There-

fore, it becomes important to achieve the best packing in n dimensions and take the

set of codewords from this packing with lowest energy. Note that codewords do not

181

all have the same energy as it was the case for codes with rate lower than 1.

o

J
!

(a) (b)

Figure 6.2: Construction of 8 codewords on (a) a 2-dimensional sphere and (b) optimal

positions.

One way of constructing real number codewords for an n dimensional block code

is to use the best lattice in n dimensions and take the points with lowest energy.

However, as n increases, our knowledge of the best lattice packings decreases, and it is

necessary to find a better way of constructing codewords. One possibility is to simply

translate in all directions the best low rate block code with 2 k codewords constructed

on an n-dimensional hypercube, which creates a geometrically uniform structure.

In other words, each codeword is translated in a lattice pattern in N dimensions

(dimensionality of the constellation generally lower than n). We must check that the

minimum distance between codewords of two translated versions is greater than the

minimum distance between codewords within the same hypercube. Figure 6.3 shows

a construction of 16 codewords in a two dimensional space by translating a structure

with (a) 2 codewords per square, (b) 3 codewords per square, and (c) 4 codewords

per square. Note that the sets of points are equivalent in (a) and (c), and optimize

182

the ratio minimum distanceto energy. However,(b) doesnot optimize the distance.

Varying k allows us to optimize the decomposition. In this example, n = N, but

the best way of increasing the overall minimum distance of the code is to let n much

greater than N in order to construct a low rate block codes with large distance.

The distance between hypercubes in N dimensions should then be comparable to the

distance of the codewords in n dimensions within the hypercube, which suggests that

the size of the hypercubes should become smaller as n becomes larger than N.

J

/ Y:

T i i

i I ;i i

H H
: i I i

I J '

H _

' i i
H _

(a) 2 (b) 3 (c) 4

Figure 6.3: Construction of high rate codes by assembling low rate codes.

Looking at the previous construction when using Ungerboeck's concept of set

partitioning [3], the whole constellation is simply divided into 2 k subsets of translated

points. The minimum distance of the code is then simply given by the minimum

between the translation distance and the codewords distance. In other words, each

of the translated hypercubic structure is coded by selecting the best set of 2 _ points.

If we do not use coding, we select all points of each hypercube (rate 1 code), thus

selecting the lowest energy points of the Z '_ lattice, which is not the best packing for

n > 1. This new way of looking at the constellation provides a better idea of how to

183

optimize the distance. It is indeed better to construct an optimal low rate code on an

n-dimensional hypercube, and then translate the hypercube with the best pattern,

than first constructing the entire constellation and try to decompose it afterwards.

When using trellis codes instead of block codes, the idea is similar. A low rate

kin trellis code creates a set of code sequences within each translated hypercube, thus

increasing the distance between the coded points in the hypercube. The minimum

distance of the code is then given by the minimum between the translation distance

(parallel branches) and the minimum free distance of the trellis code. For trellis

codes, we usually use n = N as seen in Chapter 4, since the trellis structure develops

sequences in an infinite dimensional space anyway. Here again, the difference with

block codes is that the code sequences constructed on the main hypercube are of

various dimensionalities, whereas the translated points are all in the n dimensional

space. Note that varying f_ here is similar to varying]c in the block code case, since

it provides a way of adjusting the number of hypercubes to use and the number of

encoded points within each hypercube.

The purpose of using real number codes as opposed to the regular Z" lattice, is

to be able to adjust the length of the hyperrectangle sides, in order to equate the

distances between sequences of different dimensionalities. Also, we can adjust the

translation vector such that the minimum distance between translated points and the

minimum free distance of the trellis code are equal.

Note that a new problem arises with high rate codes: each hypercube does not

have the same energy. It is obviously not optimal to simply choose which hypercube

is transmitted by using the remaining k - k information bits (uncoded). This leads

184

to the concept of shaping which maps the remaining uncoded information bits to the

translated hypercubes in such a way that the overall energy used when transmitting

the code is optimal. Shaping was first introduced by Calderbank and Ozarow [60],

after Forney and Wei [61] had proved that it is optimal to select signal points with

a Gaussian probability distribution centered at the origin of the constellation. Later,

Forney [62] developed an implementation scheme using a block or convolutional code.

The next section will describe the main idea of shaping, and we will show that our

construction of real number trellis codes can be improved by shaping as much as

regular trellis codes constructions are.

6.2 Shaping on high rate codes

The idea of shaping is to optimize the shape of the constellation in order to optimize

the average amount of energy needed to transmit symbols. It is based on the sim-

ple concept that symbols should be distributed on a sphere instead of a cube, since

symbols close to the vertices of a cube have greater energy. The gain of energy by dis-

tributing symbols on a sphere as opposed to a cube increases with the dimensionality

of the space. In particular, the gain of an n-dimensional sphere to an n-dimensional

cube goes to _re/6 which corresponds to an asymptotic gain of 1.53 dB. However, since

we are transmitting symbols in constellations of finite dimensionality, it is necessary

to create a spherical constellation over a multiple use of the constellation. Suppose

for example that we are working with a 1-dimensional constellation, and we send two

successive symbols, which can therefore be represented in a 2-dimensional constella-

185

tion obtained by the Cartesianproduct of the 1-dimensionalconstellationwith itself.

Assumingwe cansendall symbolsin the 1-dimensionalconstellation, the Cartesian

product is a squareas shownin Figure 6.4. Assumingweonly want to use the sym-

bols within the 2-dimensionalcircle, somepairs of symbolscannot be successively

sent, specifically (a, a), (a, d), (d, a), (d, d). If we look at the probability distribution

of sending each symbol, b and c are sent twice as many times as a and d. We would

be able to send twelve different symbols, by sending a, b, c, and d with unequal

probability. If we were extending this concept to an infinite dimensional spherical

constellation, the symbols on the 1-dimensional constellations should be sent with a

Gaussian distribution Pd [61]. Therefore, reciprocally, if we transmit symbols of the

constellation with a Gaussian distribution probability, we obtain a spherical packing

after an infinite number of constellation uses.

Different schemes have been studied to send symbols with a Gaussian-type prob-

ability distribution. The first type of scheme was introduced by Calderbank and

Ozarow [60] by following the same type of idea than Ungerboeck's for the coding

part. It consists in using the remaining k -]c bits in input of a block code with some

redundancy. Codewords are then mapped onto the constellation such that more code-

words are assigned to symbols with low energy and less codewords are assigned to

symbols with high energy. Thus, the mapper is obtained by partitioning the con-

stellation into energy regions. By using 12-dimensional block codes and 4 different

regions, a shaping gain of about .9 dB can be obtained. Another scheme introduced

by Forney [62] uses a convolutional code for the shaping code. The block diagram

of the whole coding scheme combining the coding and the shaping codes is shown in

186

a

b

C

d

I L i
I ! i I

.... o-- :o_-o --- O---
? ,J

/'I : I I'\,

i

i J

- X 0 _ : • 0

.... .

i

i

1 'k\

a b c d

Figure 6.4: Shaping on the Cartesian product of 1-dimensional constellations.

187

Figure 6.5.

bits

k-k bits

Indicates which
. i, point of the hypercube

Trellis code , _'

T

! VA decoder _-_,,A
i
!

Shaping
- ='_Trellis code ! _-L

!
r

L

distributeshypercubes
with different energies
on a trellisstructure

n real numbers

Mapper =-
Signal point

I
I

I
i

"- Selects sequence
with lowest energy

Figure 6.5: Trellis shaping block diagram.

Similar to the coding problem, the total number of points in the constellation

needs to be expanded in order to use the shaping trellis code. That is, hypercubes

are added to the original coding scheme. The shaping trellis code then creates a

set of sequences representing which hypercube is used in the transmission on the

different branches of the shaping trellis structure. A Viterbi decoder selects over

an infinite number of time units the sequence with lowest energy. This creates the

desired shaping.

The important point of shaping is that the selection of the hypercube transmitted

is an independent process from the selection of which point is selected within the

hypercube, as long as the noise is not too large, which would confuse the selection of

points within the hypercube and between hypercubes, thus destroying the advantage

of shaping. Therefore, for large SNR, the optimization of the free distance between

188

points within the hypercube is independent from the shaping process. In particular,

in this thesis, it was proven that equating distance between sequences optimizes the

free distance of the code. Moreover, for codes with rates greater than 1, we observed

that the distance between hypercubes determined by the minimum distance between

points on the parallel branches of the trellis should also be equal to the free distance

between coded branches. This remains valid when adding shaping. However, the

addition of shaping requires a constellation expansion, which indicates a modification

of the constellation constructed for the trellis code.

Therefore, the optimization of the constellation for the trellis code combined with

shaping should be studied in future research. In particular, if we suppose that we use a

rate ks/ns shaping code, should we design the constellation for the real number trellis

code with k + ns - ks input bits, such that the expanded constellation is optimized, or

rather select the constellation completely independently from the shaping problem ?

Also, can the constellation be optimized for both shaping and trellis codes at the same

time ? These questions need to be answered as we want to reach channel capacity

with our coding scheme, especially since between .3 and .5 dB improvement could

be obtained by optimizing the constellation, while theoretically up to 1.5 dB can be

obtained with shaping.

Since this dissertation investigated a geometric approach for real number coding,

which brought the same advantages than the usual algebraic approach for binary

codes, that is, linearity, and generating branches in the trellis, it is interesting to

explain the connection between these two approaches. The next section studies the

equivalence between the algebraic description in the binary field and the geometric

description in the Euclidean space.

future work.

189

This will lead to further recommendationsfor

6.3 Algebraic techniques for geometric construc-
tions

Binary block codes were first discovered for correcting errors by adding redundancy

to information bits. Implementation purposes required to work within the binary

field, and most of the construction and decoding techniques were discovered using

the binary field. Research on the sphere packing problem brought a new approach

to error control coding, that is, positioning points in the Euclidean space instead of

the binary field. This more geometrical concept lead to the description of a block

code as the best set of points taken from an n-dimensional hypercube. With the idea

of combining coding in the binary field with new types of constellations, high rate

codes were then introduced by Ungerboeck [3]. However, Ungerboeck's construction

idea of set partitioning the constellation to assign binary digits to points in the space

was done without geometrical motivation. The new concept of geometric uniformity,

similar to the linearity within the binary field was then discovered for the codes seen in

the Euclidean space. Recently, researchers have tried to find an algebraic connection

between an arbitrary binary labeling by set partitioning of the points in the Euclidean

space, a binary code construction, and the resulting geometric uniformity of the code

in the Euclidean space.

In this section, we use the geometric description of the last section to give a

constructive algebraic support to codes in the Euclidean space. It was explained

190

that low rate block and convolutional codes are constructed by selecting points from

an n-dimensional hypercube. Since a hypercube is described by two positions per

dimension, it is natural to assign a 0 to the first vertex in each direction and 1 to

the other vertex. Figure 6.6 shows this obvious labeling for a 3-dimensional cube.

Similarly, high rate codes were described in the previous section as a set of translated

hypercubes in which a low rate code is constructed. Therefore, additional binary

labeling can simply be given to each hypercube to designate the hypercube. This

constructive approach of a constellation gives more insight to the problem of assigning

a binary label to a point of the constellation, than the set partitioning technique does.

&Z

001 011

/

/

X

101

000

O0

111 I

....010
/

z

110

Y

Figure 6.6: Binary labeling of a 3-dimensional cube.

The interesting aspect of this natural labeling procedure is that a geometric sim-

191

ilarity can be expressed by a binary difference. Specifically, when one set of points

is defined, geometrically similar cosets can be constructed by selecting a point and

adding the same binary labels. For instance, if the square (000,100,110,010) is taken

az reference in the cube in Figure 6.6, adding labels (100,110,010) to another point

defines a geometrically similar set. For example, from point 001, adding the labels

of the first square yields (001,101,111,011), which is the translate of the first square,

thus geometrically similar. This explains why all linear codes over the binary field

are also geometrically uniform.

The question remains whether all geometrical similar cosets can be obtained by

this binary operation. The answer is certainly no, since for instance, (001,101,111,011)

is geometrically similar to (101,111,011,001) while applying the binary construction

from the point 101 leads to (101,001,011,111). This explains Wei's geometrically uni-

form trellis code constructed over a nonlinear underlying convolutional code described

in Chapter 5. Therefore, a more interesting question is whether all geometrical uni-

form cosets can be constructed algebraically from a given set, given a particular binary

labeling, or whether the binary field does not lead to all possible representation of

geometrically uniform codes.

This question is being studied by Forney and Trott [63] who defined a new class of

codes, called group codes, described over different algebraic groups. In particular, the

description of geometric generating matrix of a trellis code in section 5.3.2 does not

simply lead to all possible cosets on the branches of the trellis, and no parity-check

matrix or syndrome generating matrix can be systematically constructed with this

approach. Future research should therefore pursue the geometric construction seen in

192

this dissertation, sinceit allowsa better understandingof the adjustableparameters

to optimize the codedistance,but find new techniquesto adapt an algebraicstruc-

ture to the constellation. These techniquesshould probably be oriented towards a

constructive approachof the constellation instead of arbitrary set partitioning tech-

niques.

6.4 Summary

In this dissertation, the construction of real number trellis codes has been viewed

from a geometrical point of view. We observed that the topology of the structure

leads to a systematic construction of some parts of the trellis such as the construction

of diverging branches sets and parallel branches sets, as well as the optimization of

the constellation parameters. Yet, the remerging aspect of the trellis still makes it

difficult to systematically construct the generating branches in order to optimize the

resulting minimum free distance of the code. Therefore, a search through all possible

generators is still the best way to construct trellis codes. However, we presented in

Chapter 2 a search technique based on the statistical properties of the generator for

binary rate 1/n convolutional codes, which accelerates the process of finding good

generators. In Chapter 3, the sphere packing problem was introduced to give a

more geometrical approach to the problem of coding theory, and bounds showed

the possible improvement by using the entire Euclidean space to construct codes as

opposed to using the Z N binary lattice. In Chapter 4, the construction technique of

trellis codes by decomposition into a convolutional code and a mapper was presented.

193

Then, direct optimization of trellis codes was proposed. The direct construction

method led to sometrellis codeswith better freedistancethan previouslyconstructed

codes. Finally, in Chapter 5, the concept of geometricuniformity wasdevelopedto

simplify the construction of real number trellis codeswith optimized free distance.

This led to a new descriptionof trellis codeswherethe constellationis adaptedto the

topology of the trellis codestructure. Somequestionsremain for future researchin

the area. In particular, future researchmay investigatethe addition of shapingto the

construction of optimal trellis codes,and developa moregeneralalgebraicdescription

of geometricallyuniform real numbertrellis code.

BIBLIOGRAPHY

[1]

[2]

[3]

H. Nyquist, "Certain topics in telegraph transmission theory," AIEE Trans.,

vol. 47, pp. 617-644, 1928.

C. E. Shannon, "Communication in the presence of noise," in Proc. IRE, vol. 37,

pp. 10-21, January 1949.

G. Ungerboeck, "Channel coding with multilevel/phase signals," IEEE Trans.

Inform. Theory, vol. IT-28, pp. 55-67, Jan. 1982.

[4] A. Papoulis, Probability, Random Variables, and Stochastic Processes.

McGraw-Hill Publishing Company, 1984.

[5]

[6]

[7]

[8]

[9]

D. Slepian, "Bounds on communication," in Bell system Technical Journal,

vol. 42, pp. 681-707, 1963.

R. C. Bose and D. K. Ray-Chaudhuri, "On a class of error correcting binary

group codes," Inf. Control, pp. 68-79, March 1960.

I. S. Reed and G. Solomon, "Polynomial codes over certain finite fields," J.

Soc. Ind. AppI. Math., pp. 300-304, June 1960.

D. E. Muller, "Applications of boolean algebra to switching circuit design and

to error detection," IRE Trans., pp. 6-12, September 1954.

S. Lin and D. J. Costello, Jr., Error Control Coding. Prentice-Hall, Englewood

Cliffs N J, 1983.

[10] J.G. Proakis, Digital Communications. McGraw-Hill Publishing Company,
1989.

[11]

[12]

[13]

J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering.

Waveland Press, Inc., 1965.

P. Elias, "Coding for noisy channels," IRE Cony. Rec., pp. 37-47, 1955.

A. J. Viterbi, "Error bounds for convolutional codes and an asymptotically op-

timum decoding algorithm," IEEE Trans. Inform. Theory, vol. IT-13, pp. 260-

269, April 1967.

194

195

[14] J.L. Masseyand T. Mittelholzer, "Convolutional codesover rings," in Pro-

ceedings 4 th Joint Swedish-Soviet Int. Workshop on Inform. Theory, pp. 14-18,

August-Sept 1989.

[15] G.D. Forney, "Geometrically uniform codes," IEEE Trans. Inform. Theory,

vol. IT-37, pp. 1241-1260, Sept. 1991.

[16] H.A. Loeliger, "Signal sets matched to groups," IEEE Trans. Inform. Theory,

vol. IT-37, pp. 1675-1682, November 1991.

[17] O. Ytrehus, "Binary convolutional codes of high rate." Nov. 1991.

[18] E. Prange, "Cyclic error-correcting codes in two symbols," Air Force Cambridge

Research Center, Cambridge, Mass., vol. AFCRC-TN-57, 103, September 1957.

[19] J. Justesen, "New convolutional code constructions and a class of asymptoti-

cally good time-varying codes," IEEE Trans. Inf. Theory, vol. IT-19, pp. 220-

225, March 1973.

[20] J.L. Massey, D. J. Costello, Jr., and J. Justesen, "Polynomial weights and codes

constructions," IEEE Trans. Inf. Theory, vol. IT-19, pp. 101-110, January
1973.

[21] Y. Levy and D. J. Costello, Jr., "Constructing convolutional codes from quasi-

cyclic codes," in IEEE Workshop on Coding and Quantization, October 1992.

[22] R.M. Tanner, "Convolutional codes from quasi-cyclic codes: A link between

the theories of block and convolutional codes," in Computer Research Labora-

tory, Technical Report, USC-CRL-87-21, November 1987.

[23] J.L. Massey and M. K. Sain, "Inverses of linear sequential circuits," IEEE

Trans. Comput., vol. C-17, pp. 330-337, April 1968.

[24] S.W. Golomb, Shift-register sequences. Aegean Park Press, 1982.

[25] Y. Levy and D. J. Costello, Jr., "A deterministic approach to finding good

convolutional encoders," in Sesquicentennial Graduate Symposium, Univ. of

Notre Dame, pp. 42-43, February 1992.

[26] A.A.E. Gamal, L. A. Hemachandra, I. Shperling, and V. K. Wei, "Using simu-

lated annealing to design good codes," IEEE Trans. Inform. Theory, vol. IT-33,

pp. 116-123, Jan. 1987.

[27] C.A. Rogers, Packing and Covering. Camb. Univ. Press, 1964.

[28] J. Leech and N. J. A. Sloane, "Sphere packings and error-correcting codes,"

Can. J. Math., vol. XXIII, no. 4, pp. 718-745, 1971.

[29] G.A. Kabatianski and V. I. Levenshtein, "Bounds for packings on a sphere

and in space," Problemy Peredachi Informatsii, vol. 14, pp. 3-25, 1978.

196

[30]

[31]

[32]

[33]

E. N. Gilbert, "A comparison of signalling alphabets," Bell Syst. Tech. J.,

vol. 31, pp. 504-522, 1952.

R. J. McEliece, E. R. Rodemich, H. C. Rumsey, Jr., and L. R. Welch, "New

upper bounds on the rate of a code via the delsarte-macwilliams inequalities,"

IEEE Trans. Inform. Theory, vol. IT-23, pp. 157-166, 1977.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.

North-Holland Mathematical Library, 1988.

J. H. Griesmer, "A bound for error-correcting codes," IBM J. Res. Develop.,

vol. 4, pp. 532-542, 1960.

[34] A.R. Calderbank, J. E. Mazo, and V. K. Wei, "Asymptotic upper bounds

on the minimum distance of trellis codes," IEEE Trans. on Communications,

vol. COM-33, pp. 305-309, April 1985.

[35] J.A. Heller, "Short constraint length convolutional codes," in Jet Propul-

sion Lab., California Inst. Technol., Space Programs Summary 37-54, vol. 3,

pp. 171-177, 1968.

[36] J. Layland and R. McEliece, "An upper bound on the free distance of a tree

code," in Jet Propulsion Lab., California Inst. Technol., Space Programs Sum-

mary, 37-62, vol. 3, pp. 63-64, 1970.

[37] G.J. Pottle and D. P. Taylor, "Sphere-packing upper bounds on the free dis-

tance of trellis codes," IEEE Trans. Inform. Theory, vol. IT-34, pp. 435-447,

May 1988.

[38] A.R. Calderbank and G. J. Pottle, "Upper bounds for small trellis codes.".

[39] D.J. Costello, Jr., "Free distance bounds for convolutional codes," IEEE Trans.

Inform. Theory, vol. IT-20, pp. 356-365, May 1974.

[40] M. Rouanne and D. J. Costello Jr., "A lower bound on the minimum euclidian

distance of trellis-coded modulation schemes," IEEE Trans. Inform. Theory,

vol. IT-34, pp. 1011-1019, Sept. 1988.

[41] C. Chao and M. Chiu, "Comments on "a lower bound on the minimum euclidian
distance of trellis-coded modulation schemes".".

[42]

[43]

[44]

G. D. Forney, Jr., "Convolutional codes II: Maximum likelihood decoding,"

Inf. Control, vol. 25, pp. 222-266, July 1974.

K. J. Larsen, "Comments on 'An efficient algorithm for computing free dis-

tance'," IEEE Trans. Inf. Theory, vol. IT-18, pp. 437-439, May 1972.

A. R. Calderbank and N. J. A. Sloane, "New trellis codes based on lattices and

cosets," IEEE Trans. Inform. Theory, vol. IT-33, pp. 177-195, March 1987.

197

[45]

[46]

[47]

[48]

[49]

[5o]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

G. D. Forney, Jr., "Coset codes -- part i: Introduction and geometrical classi-

fication," IEEE Trans. Inform. Theory, vol. IT-34, pp. 1123-1151, Sept. 1988.

Invited Paper.

G. D. Forney, Jr., "Coset codes -- part ii: Binary lattices and related codes,"

IEEE Trans. Inform. Theory, vol. IT-34, pp. 1152-1187, Sept. 1988. Invited

Paper.

J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups.

Springer-Verlag, 1988.

L. F. Wei, "Trellis-coded modulation with multidimensional constellations,"

IEEE Trans. Inform. Theory, vol. IT-33, pp. 483-501, July 1987.

S. S. Pietrobon and D. J. Costello, Jr., "Trellis coding with multidimensional

QAM signal sets." submitted to IEEE Trans. Inform. Theory, July 1992.

D. Slepian, "Group codes for the Gaussian channel," Bell Syst. Tech. J., vol. 47,

pp. 575-602, April 1968.

M. D. Trott, "Realizing trellis codes as isometry codes." June 30, 1992.

F. Hemmati and D. J. Costello, Jr., "Asymptotically catastrophic convolutional

codes," IEEE Trans. Inform. Theory, vol. IT-26, pp. 298-304, May 1980.

L. F. Wei, "Rotationally invariant convolutional channel coding with expanded

signal space - Part II: nonlinear codes," IEEE Journal on Selected Areas in

Communications, vol. SAC-2(5), pp. 672-686, 1984.

J. L. Massey and T. Mittelholzer, "Convolutional codes over rings," in Fourth

Joint Swedish-Soviet International Workshop on Information Theory, pp. 14-
18, Sept. 1989.

D. Divsalar, M. K. Simon, and J. H. Yuen, "Trellis coding with asymmetric

modulations," IEEE Trans. on Communications, vol. COM-35, pp. 130-141,
Feb. 1987.

S. Benedetto, R. Garello, and M. Mondin, "Geometrically uniform trellis codes

based on multidimensional unbalanced QPSK," in Proceedings IEEE Global

Telecommunications Conference, Houston, TX, Nov. 1993.

S. Benedetto, R. Garello, M. Mondin, and G. Montorsi, "Geometrically uniform

partitions of multidimensional PSK constellations.".

A. R. Calderbank and J. E. Mazo, "A new description of trellis codes," IEEE

Trans. Inform. Theory, vol. IT-30, pp. 784-791, Nov. 1984.

[59] G.D. Forney, Jr., "Coset codes IIh Ternary codes, lattices, and trellis codes.".

198

[6o]

[61]

[62]

[63]

A. R. Calderbank and L. H. Ozarow, "Nonequiprobable signaling on the Gaus-

sian channel," IEEE Trans. Inform. Theory, vol. IT-36, pp. 726-740, July 1990.

G. D. Forney, Jr. and L. F. Wei, "Multidimensional signal constellations - part

h Introduction, figures of merit, and generalized cross constellations," IEEE J.

Select Areas Commun., vol. SAC-7, pp. 877-892, 1989.

G. D. Forney, Jr., "Trellis shaping," IEEE Trans. Inform. Theory, vol. IT-38,

no. 2, March 1992.

G. D. Forney, Jr. and M. D. Trott, "The dynamics of group codes: State spaces,

trellis diagrams, and canonical encoders," IEEE Trans. Inform. Theory, vol. [T-

39, pp. 1491-1513, September 1993.

Appendix B

On a Technique to Calculate the Exact

Performance of a Convolutional Code

On a Technique to Calculate the Exact
Performance of a Convolutional Code

M. R. Best 2, y. Levy 3, A. Rabinovich 4, p. C. Fishburn 4, A. R. Calderbank 4,

D. J. Costello, Jr. 3

Submitted as a Regular Paper to the IEEE Transactions on Information Theory

January 1994

Abstract

A Markovian technique is described to calculate the exact performance of

the Viterbi algorithm used as either a channel decoder or a source encoder for a

convolutional code. The probability of information bit error and the expected

Hamming distortion are computed for codes of various rates and constraint

lengths. The concept of tie-breaking rules is introduced and its influence on

decoder performance is examined. Computer simulation is used to verify the

accuracy of the results. Finally, we discuss the issue of when a coded system

outperforms an uncoded system in light of the new results.

Authors' Note

This paper is dedicated to the memory of the first author, Marc R. Best, whose untimely

death in 1987 cut short a promising career in research. The impetus for this paper came from

recent work by Calderbank, Fishburn, and Rabinovich [1, 2] on calculating the performance

of the Viterbi algorithm used as a source encoder. Costello and Levy pointed out that their

method was analogous to one used by Morrissey [3, 4] to calculate the performance of the

Viterbi algorithm used as a channel decoder. Subsequently, Herro [10] reminded the authors

of an earlier unpublished manuscript by Best which contained similar results.

1This work was supported in part by NASA Grants NAG5-557 and NAG3-1549.
2This author was with Twente University of Technology, Department of Electrical Engineering,

7500 AE Enschede, The Netherlands.
3These authors are with the University of Notre Dame, Department of Electrical Engineering,

Notre Dame, In 46556.
4These authors are with AT & T Bell laboratories, Mathematical Research Center, Murray Hill,

N:] 07974.

1. Introduction

A convolutional code is a set of code sequences generated by a finite-state machine

whose states define a trellis and allow efficient maximum likelihood decoding tech-

niques such as the Viterbi algorithm. The Viterbi algorithm was first used to decode

channel sequences using a convolutional code [5]. More recently, the Viterbi algo-

rithm has been used to encode source sequences using a convolutional code [1]. The

algorithm finds a maximum-likelihood trellis path to decode a channel sequence or to

encode a source sequence.

The performance of a convolutional code can be evaluated by computing either

(1) the expected number of information bits that differ between the transmitted

sequence and the decoded sequence or (2) the expected number of source bits that

differ between a source sequence and the encoded sequence. The performance is

usually expressed as the information bit error probability in case (1) and the expected

Hamming distortion in case (2). Because exact calculation is difficult in both cases,

simulations or upper bounds are often used to estimate these quantities.

The exact calculation of decoder error probability for binary convolutional codes

was first investigated by Morrissey [3] using a suboptimum feedback decoding _ech-

nique. This was then extended to Viterbi decoding for the single case of a rate 1/2,

2-state code [4]. Later, Schalkwijk, Post, and Aarts [6] developed a method for calcu-

lating error probability using another maximum likelihood decoding technique called

"syndrome decoding". Each of these approaches used a Markov chain to describe the

decoding procedure. More recently, Calderbank, Fishburn, and Rabinovich [2] used a

similar Markov chain approach to evaluate the source encoding performance of binary

convolutional codes.

The present paper utilizes the approach in [2] to evaluate the exact performance

of convolutional codes with Viterbi decoding, thereby extending the results of [4] to

codes of different rates and constraint lengths. The probability of information bit

error when using a convolutional code as a channel code, and the expected Hamming

distortion when using a convolutional code as a source code, can both be calcu-

lated using this approach. We discuss the Viterbi algorithm, describe its associated

Markov chain, and formulate expressions for the expected Hamming distortion and

the probability of information bit error. We then use these expressions to compute the

probability of information bit error for codes of various rates and constraint lengths.

To avoid confusion between trellis states and Markov chain states, we will call the

states of a trellis vertices and the states of a Markov chain states.

2. The Viterbi algorithm and tie-breaking rules

The Viterbi algorithm is a dynamic maximum-likelihood procedure that up-dates

states at every time unit. For a rate kin convolutional code with 2 _ vertices, the

Viterbi algorithm computes a metric for the 2 k paths entering each vertex at a new

time unit from the metrics at the preceding time unit and the received sequence.

It then selects a surviving path corresponding to each vertex with minimum metric.

The smallest surviving path metric is then subtracted from all 2_ metrics to yield

a metric vector over the 2" vertices. It therefore keeps track of a metric vector and

2 _ surviving paths. When the received sequence terminates, the Viterbi algorithm

chooses a final surviving path that ends in a zero vertex of the final metric vector,

i.e., a path with minimum metric.

The associated Markov chain consists of the one-step trajectories of the Viterbi

algorithm. Its states are the possible metric vectors. Transitions from one state

to another depend on the received sequence if the convolutional code is used as a

channel code, or on the source sequence if it is used as a source code. When used as

a channel code, linearity allows us (without loss of generality) to assume that the all-

zero sequence has been sent. If the channel is the binary symmetric channel, as shown

in Figure 1, an error is made with probability p and no error with probability 1 - p.

Thus, p is the probability that a transmitted 0 is received as a 1 or a transmitted 1 is

received as a 0. When used as a source code, we assume that the source produces 1

with probability p and 0 with probability 1 -p. Thus, the same Markov chain results

in both cases.

A potential problem is encountered by the Viterbi algorithm when a tie occurs

at a given vertex, that is, when two or more paths produce the same metric at a

given time unit. This happens when two or more maximum-likelihood paths come

into a given vertex of the trellis: the algorithm can choose any of those paths and

still remain maximum likelihood. This is not a problem when computing expected

Hamming distortion, which is the same regardless of the path selected by the decoder.

However, in the case of channel decoding, only one path can be correct and the

selection may determine whether an information bit error occurs. Since we assume

the all-zero sequence was transmitted, the way the decoder breaks ties should not

favor the decoding of the all-zero path since this would bias the result. We therefore

define a fair tie-breaking rule as one which does not favor any particular sequence

when a tie occurs.

We consider three types of fair tie-breaking rules. The first, the lexicographic

tie-breaker, selects the path which, looking backward in the trellis, first had the

smallest metric among all tied paths, i.e., the path for which more errors occurred

recently. The opposite of this rule, the anti-lexicographic tie-breaker, selects the path

which most recently had the largest metric. The third rule, the coin-flip tie-breaker,

3

0 1-p 0

0

Figure 1: Binary symmetric and binary symmetric erasure channel transition proba-

bility diagrams

4

randomly selects a maximum-likelihood path. An example of an unfair tie-breaking

rule is to always select the path coming from the highest vertex in the trellis diagram.

This would favor the decoding of the all-zero path when the trellis is drawn with the

all-zero path on top.

Another possibility is to use a Markovian tie-breaking rule that only considers

the preceding state. The lexicographic and anti-lexicographic rules are usually non-

Markovian since they may have to look back further than the preceding vertex. On

the other hand, the coin-flip tie-breaker is both fair and Markovian, but can be more

difficult to analyze, as we will see in Section 5.

In some of our calculations, we use a Markovian but unfair deterministic tie-

breaking rule for simplicity. We define the 1-step lexicographic tie-breaker as follows.

If one of the maximum-likelihood paths into a vertex comes from a vertex whose metric

is smaller than the others, we choose that path. Otherwise, the tie is broken by looking

at the branch labels from right to left, finding the first bit in which the two paths

disagree, and then picking the path that agrees with the received bit in that position.

However, this rule is unfair since certain paths, depending on the transmitted code

sequence, will be favored over others. We can try to correct for this by reversing the

rule, i.e., by picking the path that first disagrees with the received sequence. Another

possibility is to choose a branch at random when the 1-step lexicographic tie-breaker

does not resolve the issue. The result for this procedure would fall between the other

two results.

The anti 1-step lexicographic tie-breaker is similar to the 1-step lexicographic tie-

breaker, except that we choose the maximum-likelihood path which comes from a

vertex whose metric is greater than the others. If this fails, we break the tie as in the

1-step lexicographic tie-breaker.

The binary symmetric channel results in a quantized channel output with two

values and is equivalent to the source coding problem with binary source outputs.

However, other channels, such as the binary erasure channel (see Figure 1), which

quantizes the output into three values (0,1, and e), can yield better performance.

This channel is equivalent to the source coding problem with ternary source outputs.

Ultimately, soft decision decoding uses unquantized received values in the Viterbi

algorithm, which corresponds to source coding with a continuous source. Although

the last problem was studied for source coding by Calderbank and Fishburn [7], it

is much more complex since the number of states in the Markov chain is infinite.

Therefore, in the remainder of this paper, we only consider channels or sources with

a finite number of outputs.

5

3. The Viterbi algorithm's Markov chain

In this section we use the Viterbi algorithm for its original purpose of channel decod-

ing. We restrict ourselves to the binary symmetric channel and consider the Hamming

distance dH between two sequences, defined as the number of bits in which they differ,

as the metric. The variables introduced for the Markov chain are the same as for the

source encoding problem since the Markov chain is the same. Other channels and

metrics can be used in a similar fashion with suitably defined Markov chains.

Let R N be a received sequence of length N time units. At each vertex 3' of the

trellis, a maximum likelihood path is chosen from among the paths leading to that

vertex and a metric D N is computed from the metrics at time unit N - 1. Let A N

be the maximum-likelihood path. Then,

= RN). (1)
--N

The relative metric D._ at vertex 3' is obtained by subtracting the minimum metric

among all the vertices from DN:

--N N min(DN). (2)D_ = D r -

The metric vector at time unit N is

-_N --N --N --N=(D0,D , ,...,D2v_,). (3)

These internal states of the Viterbi decoder form the Markov chain, with the received

symbol r in the sequence R N at time N determining the transitions from one state

to another. We let M denote the number of recurrent states that adhere to (3).

Figure 2 shows the trellis diagram of the rate 1/2, 2-state convolutional code with

generator matrix [1, 1 + D]. Time evolves from left to right following the arrows.

For this code, the Hamming distance between a branch label and a channel output

is at most 2, so that the possible metric vectors or states of the Markov chain are

(2, 0), (1, 0), (0, 0), (0, 1), (0, 2).

The transition probability matrix T for the resulting 5-state Markov chain can be

easily computed by checking which received signals determine a transition from one

metric vector to the next. The conditional probability of this received signal defines

the transition probability. Figure 3 shows the Markov chain for the rate 1/2, 2-state

code with

(1 -p)2 0 2p(1 - P) 0 p2

(1 v) o 2v(1-p) o]T= 0 1-p 0 p 0 .

p(1-p) 0 p:+(1-p): 0 p(1-p)

p(1-p) 0 p2+(1-p)2 0 p(1-p)

(4)

6

10

Figure 2: The trellis diagram of the 2-state convolutional code with generator matrix

[1, 1 + D].

We compute the probability of information bit error in channel decoding, or the

expected Hamming distortion in source coding, from the steady-state behavior of

the Viterbi algorithm. Let lr = (rr0, Trl,...,TrM_l)' be the vector of steady-state

probabilities of being in states 0 to M - 1 of the Markov chain. Then 7r is given by

7r = T'Tr (5)

and rr0 + rl + ... + 71"M-I = 1. The steady-state probability vector for the rate 1/2,

2-state convolutional code is

1-4p+8p 2-7p 3+2p 4

1 2p - 5p 2 + 5p 3 - 2p 4

_= l+3p2_2p 3 2p-3p2+2p 3 . (6)
2p 2 - 3p 3 + 2p*

p2+p3-2p4

o Exact calculation of expected Hamming dis-

tortion

The expected Hamming distortion corresponds to the expected number of bits that

one has to change in a source sequence-to obtain the closest code sequence, i.e., the

closest path through the trellis. For state D of the decoder, suppose that a source

symbol r causes a transition from D to D'. The one-step aggregate distortion g(r, D)

is defined as the total number of bits that differ from the source symbol r along all

surviving paths:

g(r,-D) = D'o - -Do + D; - -D1 +... + D'a__I - -D2_-_. (7)

The expected Hamming distortion g per dimension for a rate k/n convolutional

7

r=(1,0)
p(1-p)

(2,0)

'=(0,0) or (1,1' r=(1,1

p2 + (l-p)= p=

r=(1,0) or (1,1) r=(O,O) or (0,1)
r=(1,1) p 1-p r=(0,1)

p2 (1,0) (0,0) (0,1) p(1-p)

r=(O,O) or (1,1) r=(0,1) or (1,0)

p= +(l_p)= 2p(1-p)

r=(O,1) r=(O,1) r=(O,O)
_(1-p) 2p(1-p)

(0,2)

r=(O,O)

(1.p)2

Figure 3: Markov chain for the rate 1/2, 2-state convolutional code with generator

matrix [1, 1 + D].

code is then given by
1

= (8)
D,r

where q, is the probability of source symbol r and lr_ is the steady-state probability

of state D. For the rate 1/2, 2-state code, we compute the one-step aggregate distor-

tions for the five states of the Markov chain to be g(r, (0,2)) = g(r,(2,0)) = 0 and

g(r, (0, 1)) = g(r, (0,0)) = g(r, (1,0)) = 1 for all possible source symbols r. Thus,

1 2p -- 3p 2 + 2p 3

= _(rrl + 7r2 + 7r3) = 2(1 + 3p 2 - 2p3)" (9)

This calculation is straightforward because it is computed as the average of one-

step aggregate distortions. This is possible since the minimum distortion among all 2"

paths equals the average distortion over all 2_ paths in the limit as the length of the

encoded source sequence increases [7]. Computations for other codes are described in

[7].

In the case of channel decoding, the probability of codeword bit error is the ex-

pected number of bits that one has to change in a received sequence to obtain the

closest code sequence, i.e., the closest path through the trellis. Because of the anal-

ogy between source encoding and channel decoding, exactly the same procedure as

described above can be used to calculate the probability of codeword bit error for

channel decoding. However, because we must consider explicitely the path decoded

by the algortihm to determine information bit errors, the calculation of the probability
of information bit error described in the next section is more difficult.

11 Exact calculation of information bit error prob-

ability

In this section we compute the probability of information bit error by examining the

path decoded by the algorithm. At a given state of the Markov chain, we want to

compute the exact error probability per bit for the current k information bits. To

do this, we must consider all future received sequences that stem from a particular

decoded branch. Given metric state D and a received sequence r t of l branches, let

P(rt,D) = ilk if i information bits are decoded incorrectly, i = 0, 1,...,k. The

probability of error can then be expressed as

Pc = _ r-gqr, P(r t, D), (10)

where q** is the probability of receiving sequence r t. It is understood that the received

sequences in (10) are mutually disjoint and exhaust all possibilities that cause errors

in the current time unit.

The main problem encountered in calculating (10) is cataloging all possible future

received sequences that cause information bits in a given time unit to be decoded

incorrectly. If we use the lexicographic tie-breaker for the rate 1/2, 2-state code, only

length-1 sequences need to be examined. In this case a decoding error occurs if and

only if (i) the correct node has a non-zero relative distance, or (ii) if both nodes have

zero relative distances and channel errors of type (0, 1) or (1,0) occur. Thus, l = 1 ,

and P(r,D) (5 {0,1} since k = 1.

For the rate 1/2, 2-state code, P(r,_) = 0 for _ = (0,2) or (0,1) (no error
regardless of the future received sequence)and P(r,D) = 1 for -D = (2,0) or (1,0)

(an error always occurs). In addition, P(r, (0,0)) = 1 if r = (0,1) or r = (1,0), and

P(r, (0,0)) = 0 if r = (0,0) or r = (1,1). Thus, for this code,

Pc -- 2p(1 - p)Tr2 + 7r3 + _'4 -- 7p2 - 12p3 + 10p4 - 4ps1 + 3p2 - 2pz (11)

The anti-lexicographic tie-breaker requires consideration of sequences of length 2,

so we examine all l = 2 sequences as follows:

State D

0: (o,2)
1: (0,1)

Received sequence r 2

(0,0,.,.) or (1,1,.,.)
(0,1,0,0) or (1,0,0,1)
(0,1,1, 1) or (1,0, 1,0)
(0,1,0,1) or (1,0,0,0)
(0,1,1,0) or (1,0,1,1)

P(r2,-D)

0

1

1

0

0

2: (0,0) (0,0,-,.) or (1,1,-,.) 0

(0,1,.,') or (1,0,.,.) 1

3: (1,o) (0,1,',') or (1,0,-,.)
(0,0,0,0) or (1,1,0,1)
(0,0, 1,1) or (1,1,1,0)
(0,0,0,1) or (1,1,0,0)
(0,0,1,0) or (1,1,1,1)

4: (2,0) ', ", ", ")

Then,

p(1 - p)rl + 2p(1 - p)r2 + (4p 3 - 7P 2 + 4p)Tr3 + zr,

p2(7 - 8p - 8p 2 + 26p 3 -- 24p 4 + 8P s)

1 + 3p 2 - 2p a

(12)

10

For the coin-flip tie-breaker, the length I of sequences that one must look at is too

large, and we need to use a recursive technique. We compute the bit error probability

for the coin-flip tie-breaker by solving for the probability P(-D) = _,, q,,P(rt,-D) of

an error at a vertex in the trellis conditioned on being in state D at that step. Then

P_ = Er_P(D). As before, P(0) = 0 and P(4) = 1. To compute P(1), P(2), and

P(3), a forward recursion can be used to account for all r t possibilities by looking at

one step at a time. Specifically, given a starting state D, P(D) can be computed by
the recursive formula

P(-D) = y]_ q_P(D'), (13)
$.

where r can be any received symbol and D',. is the resulting Markov chain state. Using

this forward recursion for states 1, 2, and 3 under the coin-flip tie-breaker gives

P(1) = p(1-P)[l_P(2)]+p(1-p)[p(2)l_P(1-p) (14)
2 2

P(2) = (1 - p)2[p(1)] + p211 - P(3)] + p(1 - p)[1 - P(1)] + p(1 - p)[P(3)]

_ _1 (1 -- p2
P)2 [P(2)] + [1 - P(2)] + p(1 - p).

P(3) - 2 + 2 -2-

The solutions for the latter two P(D) are

P(2) =

P(3) =

4p(1 - p)

2 - p -b 4p 2 - 4i03

2 + 7p- 12p 2 + 13p 3 - 12p 4 + 4p 5

2(2 -p + 4p 2 - 4p 3)

(15)

Then,

P_ = P(1)Trl + P(2)Tr2 + P(3)Tr3 + r4 (16)

p2(14 - 23p + 16p 2 + 2p 3 - 16p 4 + 8p 5)

(1 + 3p 2- 2p3)(2-p+4p2-4p 3)

for the coin-flip tie-breaker.

The preceding error probabilities are plotted as functions of p in Figure 4. We note

for this particular code that the lexicographic tie-breaker provides a fair and better

tie-breaking rule than the others. However, the anti-lexicographic rule might be better

for other codes. In any case, we note that the probability of error associated with the

coin-flip tie-breaker is always between the other two. Hence, for a given code, either

the anti-lexicographic or the lexicographic tie-breaking rule is more advantageous

than the simple coin-flip tie-breaking rule that is used in practice.

11

0.45

0.35

0.15

0.05

Coin-Flip
Tie-Breaking Rule

Figure 4:

AntJ-lexicographic
Tie-Breaking

Lexicographic
Tie-Breaking Rule

0 I I I I I I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Probability of information bit error for the rate 1/2, 2-state code with

generator matrix [1,1+D].

12

o Calculation of information bit error probabil-

ity for other rates and constraint lengths

New problems arise when the preceding approach is used to calculate the probability

of information bit error for more complicated rates and larger constraint lengths. One

problem is a rapid increase in the number of Markov chain states as the constraint

length increases. For example, while the 2-state, rate 1/2 code has a Markov chain

with 5 states corresponding to all possible metric vectors, the 4-state, rate 1/2 code

with generators [101,111] has 30 Markov chain states, and a typical 8-state code

has several hundred states. This prevents us from computing the exact probability

of information bit error or the expected Hamming distortion for larger constraint

lengths.

Another problem is the length of the received sequences r I that must be examined

to compute P(rt,D). As constraint length increases, the length of the sequence can

become large and create a very large number of terms when calculating the probability

of error. A program was written to determine all the received sequences that must

be examined. However, due to the large number of terms for codes other than the

rate 1/2, 2-state code, we decided to directly introduce the value of the probability

of occurrence of each sequence for a particular value of p, instead of keeping it as

a function of p. Thus, instead of a formula as a function of p, we can compute the

probability of information bit error for any given crossover probability p.

Finally, for rate k/n codes with k > 1, up to k information digits can be decoded

incorrectly at each step. In this case, each vertex of the trellis can be labeled with

the number of errors caused by passing through it, and that information can then be

included in the state of the Markov chain. Another technique, simpler to implement,

is to consider each information bit separately and average the probability of error
obtained for each bit.

We calculated the information bit error probability for the 2, 4, and 8-state rate

1/2 codes, the 2-state rate 1/3 and 1/4 codes, and the 4 and 8-state rate 2/3 codes in

the list of optimum free distance codes in [8]. The best deterministic tie-breaking rule

(1-step lexicographic or 1-step anti-lexicographic) was used in the calculations. The

information bit error probability curves are shown in Figure 5. Computer simulation

results are also shown for each of these codes. Although the fit is not exact, the error

(caused by simulation inaccuracies and the deterministic, i.e., unfair, tie-breaking

rules) is within the expected range. The straight line corresponds to an uncoded sys-

tem for which the probability of information bit error equals the crossover probability

p of the binary symmetric channel.

13

0.45

0.35

0.15

0.05

(3,2,3)

(3,2,2)

I
I

I
I

(3,1,2)

(2,l,l)

-- : simulation

-- : calculation

! I I I I I

0 0.05 O.1 O. 15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 5: Probability of information bit error for different codes as a function of the

crossover probability p of a binary symmetric channel.

14

o Expressing the information bit error probabil-

ity as a Taylor series in p

The Markov chain approach to computing the probability of information bit error as

a function of the crossover probability p of a binary symmetric channel leads to a

rational fraction in p. These fractions can be expanded in a Taylor series to show the

dominant terms. The 2-state, rate 1/2 code probability of information bit error with

the lexicographic tie-breaking rule can be expanded into

P_ = 7p 2 _ 12p 3 - llp 4 + 46p _ + 9p 6 + O(pr). (17)

The coin-flip and anti-lexicographic tie-breakers have

Pc = 7P 2 - 8P 3 - 31p 4 + 64p s + 86p 6 + O(P 7) (18)

and

Pc = 7P 2 - 8P 3 - 29p 4 + 64p 5 + 47p 6 + O(pr), (19)

respectively. This shows that the best-to-worst rules for small p are (1) the lexico-

graphic rule, (2) the coin-flip rule, and (3) the anti-lexicographic rule.

We note also that the first term in the Taylor series expansion can be antici-

pated from the union bound, which states that a code with free distance dlree has a

probability of information bit error upper bounded by [8]

P_ < Kp_ +..., (20)

where K is a constant depending on the path multiplicity of the code. The 2-state

code has distance 3, so Pc < Kp 3/2. Hence, the Taylor series expansion can only start

with a term in p2, which corresponds to the above calculations.

It is possible for other codes to interpolate the points we obtained for different

values of p to get an idea of the Taylor series expansion for those codes. Since the

free distance of the 4-state code is 5, the Taylor series expansion must start with a

term in p3, and interpolation for various tie-breaking rules can provide an estimate

of the leading coefficients for those rules.

So Probability of information bit error of a coded

system versus an uncoded system

Figures 4 and 5 show the probability of information bit error as a function of p for

different codes, as well as Pc = P for an uncoded system. An interesting point on these

15

figures is the crossover probability p below which a coded system performs better than

the uncoded system. The following table shows this value for the codes we studied,

along with the crossover probability at which the channel capacity equals the code

rate.

Rate Crossover probability below

which the coded system

outperforms the

uncoded system

2/3

2/3

Number of vertices Crossover probability

at which capacity of BSC

channel equals rate

1/2 .27 2 .11
.13 4

.12 8

1/3 .19 4 .17

1/4 .23 4 .21
.06.04

.04

The table shows that the crossover probability below which coding performs better

than no coding is closely related to the channel capacity. In fact, for the codes studied,

as constraint length increases, the crossover probability below which the coded system

outperforms the uncoded system approaches the probability at which the capacity

C = 1 - H2(p) = 1 + plogp + (1 - p)log(1 - p) of the BSC equals the rate of the

code, as predicted by Shannon's coding theorem [9].

Another interesting comparison is gained from an analysis of the weight structure

of a code obtained by examining the loops in the state diagram of the encoder [8].

Long codewords with low weight, which are the best candidates for causing multiple

bit errors, are generated by cycling around the lowest average weight loop in the

state diagram. If the channel crossover probability approaches half the value of the

minimum average weight loop, the decoder is in danger of choosing one of these long

low weight codewords, thus causing multiple bit errors. This can result in coded

performance becoming worse than uncoded performance. For example, the minimum

average weight loop for the three rate 1/2 codes in the above table is .50 for the two-

state code and .25 for both the four and eight-state codes. This suggests that poor

performance, i.e., worse than uncoded, should occur at channel crossover probabilities

of about .25 for the two-state code and .125 for the four and eight-state codes. The

results shown in the table are consistent with these predictions.

16

9. Conclusion

In this paper we have described a Markovian approach to calculating the performance

of the Viterbi algorithm in decoding convolutional codes used as source codes or

channel codes. The Markov chain associated with the Viterbi algorithm was studied

in detail for the 2-state, rate 1/2 code. We computed this code's expected Hamming

distortion as a function of the source distribution and its probability of information

bit error as a function of the binary symmetric channel crossover probability.

Problems related to this method of calculation were described, and results for

different rates and constraint length codes were compared to computer simulations.

Our approach also results in a Taylor series expansion that describes a code's perfor-

mance for small p and is consistent with upper bounds previously computed. Finally,

we noted that for the codes examined, the crossover probability above which a coded

system preforms worse than an uncoded system is consistent with what would be ex-

pected from Shannon's coding theorem and from an analysis of the weight structure
of the code.

Although the Markovian approach has limitations, especially for larger constraint

lengths, it gives insight into the behavior of the Viterbi algorithm for channel decod-

ing and source encoding. Extensions to erasure channels, such as shown in Figure 1,

and to non-binary sources, are possible. We feel the results presented in this paper re-

inforce the potential value of the Markovian metric-vector approach for convolutional

code performance analysis, in contrast to the weight distribution analysis approach
used for block codes.

References

[1] M. W. Marcellin and T. R. Fischer, "Trellis coded quantization of memoryless

and Gauss-Markov sources," IEEE Trans. Commun., vol. COM-38, pp. 82-92,
Jan. 1990.

[2] A. R. Calderbank and P. C. Fishburn, and A. Rabinovich, "Covering properties

of convolutional codes and associated lattices," in Proceedings of the 1993 IEEE

International Symposium on Information Theory, p. 141, January 1993.

[3] T. N. Morrissey, Jr., "Analysis of decoders for convolutional codes by stochastic

sequential machine methods," IEEE Trans. Inform. Theory, vol. IT-16, pp. 460-

469, July 1970.

[4] T. N. Morrissey, Jr., "A Markovian analysis of Viterbi decoders for convolutional

codes," in Proceedings of the National Electronics Conference, pp. 303-307, Oc-
tober 1969.

17

[5] A. J. Viterbi, "Error bounds for convolutional codesand an asymptotically opti-
mum decodingalgorithm," IEEE Trans. Inform. Theory, vol. IT-13, pp. 260-269,

April 1967.

[6] J. P. M. Schalkwijk, K. A. Post, and J. P. J. C. Aarts, "On a method of calculat-

ing the event error probability of convolutional codes with maximum likelihood

decoding," IEEE Trans. Inform. Theory, vol. IT-25, pp. 737-743, Nov. 1979.

[7] A. R. Calderbank and P. C. Fishburn, "The normalized second moment of the

binary lattice determined by a convolutional code," in Proceedings of the 1993

IEEE International Symposium on Information Theory, p. 137, January 1993.

[8] S. Lin and D. J. Costello, Jr., Error Control Coding. Prentice-Hall, Englewood

Cliffs N J, 1983.

[9] C. E. Shannon, "Communication in the presence of noise," in Proc. IRE, vol. 37,

pp. 10-21, January 1949.

[10] M. A. Herro, Private communication, 1993.

18

.D

